
ACF and PACF of an AR(p)

• We will only present the general ideas on how to obtain

the ACF and PACF of an AR(p) model since the details

follow closely the AR(1) and AR(2) cases presented

before.

• Recall that AR(p) model is given by the equation

Xt = φ1Xt−1 + φ2Xt−2 + . . . + φpXt−p + ωt

• For the ACF, first we multiply by Xt−k both side of the

autoregressive model equation to obtain,

Xt−kXt = φ1Xt−kXt−1 + . . . + φpXt−kXt−p + ωtXt−k
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• By taking expectation at both sides this equation, we get

ρk = φ1ρk−1 + φ2ρk−2 + . . . + φpρk−p

or written in lag-operator

Φ(B)ρk = 0

with Φ(B) = 1 − φ1B − φ2B
2 − . . . − φpB

p

• The implied set of equations for different values of

k = 1, 2, . . . , are known as Yule-Walker equations.

• We try again a solution of the form ρk = λk. which leads

to the equation

λp
− φ1λ

p−1
− φ2λ

p−2
− . . . − φp = 0

• The solutions to this equation are the reciprocal roots
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α1, α2, . . . , αp of the characteristic polynomial Φ(B)

• The general solution for the difference equation is

ρk =
p

∑

i=1

Ai(αi)
k = A1(α1)

k + A2(α2)
k + . . . Ap(αp)

k

• ρk has an exponential behavior and cyclical patterns

(damped sine wave) may appear if some of the α′

js are

complex numbers

• Theorem. Given a general difference equation of the

form C(B)Zt = 0 where

C(B) = 1 + C1B + C2B
2 + . . . CnBn and

C(B) =
∏n

i=1(1 − RiB) so the R′

is are the reciprocal

roots of the equation C(B) = 0, we have that the solution

is Zt =
∑n

i=1 AiR
t
i (without proof).

92



• For the PACF we can apply Cramer’s rule for

k = 1, . . . , p which can gives us an expression for Pkk.

• If k > p, then Pkk = 0 so the PACF of an AR(p) must cut

down to zero after lag k = p, where p is the order of the

AR model.

ACF and PACF for Moving Average models

• Lets start with the MA(1) given the equation

Xt = ωt + θωt−1

with θ the model parameter and ωt ∼ N(0, σ2)

• Lets find an expression for the ACF, ρk

• For lag k = 0

γ0 = V ar(Xt) = V ar(ωt) + θ2V ar(ωt−1) = σ2(1 + θ2)
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• For lag 1, consider the product XtXt−1. Using the MA(1)

equation, we obtain

XtXt−1 = (ωt + θωt−1)(ωt−1 + θωt−2)

= ωtωt−1 + θωt−1
2 + θωt−2ωt + θ2ωt−1ωt−2

• If we take expected value at both sides of the equation,

E(XtXt−1) = γ1 = θσ2

• Additionally for any value of k

XtXt−k = ωtωt−k +θωtωt−k−1 +θωt−1ωt−k +θ2ωt−1ωt−k−1

• Then, if k > 1, E(XtXt−k) = γk = 0
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• The ACF of an MA(1) is given by

ρk =







θ/(1 + θ2); k = 1

0 k > 1

• Using ρk = 0 for k > 1,we can show that the PACF

Pkk = φkk =
θk(1 − θ2)

1 − θ2(k+1)
k ≥ 1

• Contrary to its ACF, which cuts off after lag 1, the

PACF of an MA(1) model decays exponentially.

• For a general MA(q) process, the ACF “cuts down” to

zero after lag q and the PACF will have exponential

behavior depending on the characteristic roots of

Θ(B) = (1 + θ1B + θ2B
2 . . . + θqB

q) = 0.
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• Instead of trying to find equations in the general case, we

will look at somes examples using simulation.

• Firstly, we consider an MA(1) process with parameters

θ = 0.9 and θ = −0.9.

• Then, we consider an MA(2) process with parameters

(θ1 = 0.85, θ2 = 0.5) and with parameters

(θ1 = −0.85, θ2 = −0.5)

• Finally, we consider an MA(4) process with parameters

(θ1 = 0.9, θ2 = −0.8, θ3 = 0.75, θ4 = −0.4)

• Again, we are using this function arima.sim

xt=arima.sim(1000,model=list(ma=0.9))
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• To obtain the ACF and PACF for an ARMA(p,q)

process, we need to follow the same strategy used to

obtain the ACFs and PACFs for AR and MA models.

• Recall that an ARMA(p,q) process is defined by the

equation,

Xt = φ1Xt−1 + . . . + φpXt−p + ωt + θ1ωt−1 + . . . + θqωt−q

• As before, if we multiply by Xt−k both sides of the

equation and take “expected value”, we obtain

γk = φ1γk−1 + . . . + φpγk−p + E(Xt−kωt) − θ1E(Xt−kωt−1) −

. . . − θqE(Xt−kωt−q)

• Since

E(Xt−kωt−i) = 0; k > i
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we obtain that

γk = φ1γk−1 + . . . + φpγk−p; k ≥ q + 1

• We know (divide by γ0) that this equivalent to

ρk = φ1ρk−1 + . . . + φpρk−p; k ≥ q + 1

which gives the Yule-Walker equations but with the restriction

k ≥ q + 1.

• For a lag k ≥ q + 1, the autocorrelation function of an

ARMA(p,q) process has a similar behavior to the ACF of a

pure AR(p) process.

• However, the first q autocorrelations ρ1,ρ2,...ρq depend on both

autoregressive and moving average parameters.

• The PACF for an ARMA (p,q) is complicated and usually not

needed.
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• This PACF will have a similar behavior as the PACF of a

MA(q) process.

• Lets look at some examples for simulated data of an

ARMA(1,1) processes.

• The examples consider 1000 simulations. The AR coefficient is

0.95 (0.6) and MA coefficient is 0.5.

• We will also consider an ARMA(2,1) process where the AR

part is built with r = 0.95 ω = 0.42 and the MA parameter is

θ = 0.7.

• Finally, we will show an ARMA(10,2) process where AR part

is defiened with 10 complex reciprocal roots.
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