ACF and PACF of an AR(p)

e We will only present the general ideas on how to obtain
the ACF and PACF of an AR(p) model since the details
follow closely the AR(1) and AR(2) cases presented

before.

e Recall that AR(p) model is given by the equation
Xe =01 Xi 1+ 92X o+ ..+ 9p X p +wy

e For the ACF, first we multiply by X;_; both side of the

autoregressive model equation to obtain,

Xk Xe =1 X4, X1+ oo+ Op Xy, Xpp + wir Xy g




e By taking expectation at both sides this equation, we get

Pk = P1Pk—1 + P2pk—2 + ... + OpPr—p

or written in lag-operator
®(B)pr, =0
with (I)(B) =1—- ¢1B — ¢QB2 — ... ¢po

e The implied set of equations for different values of

k=1,2,..., are known as Yule- Walker equations.

e We try again a solution of the form p; = \*. which leads

to the equation

AP — g AP — g NPTE L — 9, =0

e The solutions to this equation are the reciprocal roots




a1, Qo, ..., ap, of the characteristic polynomial ®(B)

The general solution for the difference equation is

p
or =Y Ai(a)f = Aj(a)k + As(aa)k + ... Ay(ap)”
1=1

pr has an exponential behavior and cyclical patterns
(damped sine wave) may appear if some of the Oé;-S are

complex numbers

Theorem. Given a general difference equation of the
form C'(B)Z; = 0 where
C(B)=1+C1B+CyB?+...C,B" and

C(B) =[1;21(1 — R;B) so the Rs are the reciprocal
roots of the equation C(B) = 0, we have that the solution
is Z; = > | A; Rt (without proof).




e For the PACF we can apply Cramer’s rule for
k=1,...,p which can gives us an expression for FPy.

o If k£ > p, then Py = 0 so the PACF of an AR(p) must cut
down to zero after lag k£ = p, where p is the order of the
AR model.

ACF and PACF for Moving Average models
e Lets start with the MA(1) given the equation

Xt = Wt + th_l
with 6 the model parameter and w; ~ N (0, 0?)

e Lets find an expression for the ACF, p;
e For lag k=10

Yo = Var(Xy) = Var(w) + 0*Var(w,—1) = o*(1 + 62)




For lag 1, consider the product X; X; ;. Using the MA(1)

equation, we obtain

X X1 = (wr+ 0w 1) (w1 + Ow_o9)

2 2
Wiwi—1 + Qw17 4+ Owi_ows + 07w _1wi_o

If we take expected value at both sides of the equation,

E(XiX;—1) =7 =00

Additionally for any value of &
Xi Xtk = wiwi g+ Owiwi g1+ 0w 1w g+ 02w 1w g1

Then, if K > 1, B(X: X ) =% =0




The ACF of an MA(1) is given by
0/(1+0%); k=1
Pk =
0 k>1

Using pr = 0 for k > 1,we can show that the PACF

0% (1 — 0?)
1 — H2(k+1) k=1

Prr = Ork =

Contrary to its ACF, which cuts off after lag 1, the
PACF of an MA(1) model decays exponentially.

For a general MA(q) process, the ACF “cuts down” to

zero after lag ¢ and the PACF will have exponential
behavior depending on the characteristic roots of
@(B) = (1 + 61 B + 9232 co. T Qqu) = 0.




Instead of trying to find equations in the general case, we

will look at somes examples using simulation.

Firstly, we consider an MA(1) process with parameters
0 =0.9 and § = —0.9.

Then, we consider an MA(2) process with parameters
(A1 = 0.85,02 = 0.5) and with parameters

(6, = —0.85,05 = —0.5)

Finally, we consider an M A (4) process with parameters
(0; = 0.9,0 = —0.8,05 = 0.75,04 = —0.4)

Again, we are using this function arima.sim

xt=arima.sim(1000,model=1ist(ma=0.9))




MA(1) process with alpha =.9, sigma”2=1

as.ts(xt)

Series xt

Series xt

Partial ACF
-0.2 00 02 04




MA(1) process with alpha=-.9, sigma”2=1

as.ts(xt)

Series xt

Lag

Series xt

Partial ACF




MA(2) process with Thetal= .85 and Theta2=.5

as.ts(xt)

Series xt

Series xt

Partial ACF




MA(2) process with Thetal=-.85 and Theta2=-.5

as.ts(xt)

Series xt

Series xt

Partial ACF
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MA(4) process with Thetal=.9, Theta2=-.8, Theta3=.75,Thetad=—.4

as.ts(xt)

Series xt

Series xt

Partial ACF
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To obtain the ACF and PACF for an ARMA(p,q)
process, we need to follow the same strategy used to
obtain the ACFs and PACF's for AR and MA models.

Recall that an ARMA (p,q) process is defined by the

equation,

X =1 X4 1+...+ prXt—p +wr + w1+ ...+ qut—q

As before, if we multiply by X;_; both sides of the
equation and take “expected value”, we obtain

Y = P1Ve—1+ ...+ OpVh—p + E(Xi—pwi) — O E(Xp—pwi—1) —
e QqE<Xt_k;wt_q)

E(Xt_kwt_z') = O, k>1
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we obtain that
Yo = P1Vk—1+ .+ OpVh—p; k = q+1
We know (divide by 7¢) that this equivalent to

Pk = P1Pk—1+ ...+ Pppr—p; B > q+1

which gives the Yule-Walker equations but with the restriction
k>q+1.

For a lag kK > g + 1, the autocorrelation function of an
ARMA (p,q) process has a similar behavior to the ACF of a
pure AR(p) process.

However, the first ¢ autocorrelations p1,p2,...0, depend on both

autoregressive and moving average parameters.

The PACF for an ARMA (p,q) is complicated and usually not
needed.
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This PACF will have a similar behavior as the PACF of a
MA(q) process.

Lets look at some examples for simulated data of an
ARMA(1,1) processes.

The examples consider 1000 simulations. The AR coefficient is
0.95 (0.6) and MA coefficient is 0.5.

We will also consider an ARMA(2,1) process where the AR
part is built with » = 0.95 w = 0.42 and the MA parameter is
6 =0.7.

Finally, we will show an ARMA(10,2) process where AR part

is defiened with 10 complex reciprocal roots.
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ARMA(1,1) process with Phi=.95, Theta=.5

as.ts(xt)

Series xt

bbb --H-H-H-H—l-H-J-L-I-H-|-++-|-f-.-1-r-.-1-r-.-1-r-.-r-.-1-r-.-1-r-.-1---

Series xt

Partial ACF
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ARMA(1,1) process with Phi=.6, Theta=.5

as.ts(xt)

Series xt

Series xt

Partial ACF
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ARMA(2,1) process

as.ts(xt)

Series xt

Series xt

Partial ACF
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ARMA(10,2) process

as.ts(xt)

Series xt

Series xt

Partial ACF
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