Review of concepts for the Normal Linear Model

- $Y_i \sim N(\mu_i, \sigma^2), i = 1, 2, ..., n.$
- $\mu_i = E(Y_i) = x_i^t \beta$ linear predictor so $g(\mu_i) = \mu_i$. β is the vector of parameters
- The usual notation for the model is,

$$Y = X\beta + \epsilon$$

Y is the vector of observations, *X* design matrix, ϵ is the vector of errors.

- MLR, ANOVA, ANCOVA models take this form.
- MLE of β is $\hat{\beta} = (X^T X)^{-1} X^T Y$ (denote this as b)
- σ^2 is treated as a *nuisance parameter*.

• σ^2 can be estimated as

$$\hat{\sigma^2} = \frac{1}{(N-p)} (Y - Xb)^T (Y - Xb) = \frac{1}{(N-p)} \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$$

where \hat{Y}_i is the fitted value for observation i or $\hat{Y}_i = x_i^T b$

- If \hat{Y} is the vector of all fitted values, then $Y \hat{Y}$ is the vector of *residuals*.
- Deviance

$$D = \frac{1}{\sigma^2} \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2 = \frac{1}{\sigma^2} (Y - Xb)^T (Y - Xb)$$

which depends on σ^2 .

Hypothesis tests on β

- $H_0: \beta = \beta_0 = (\beta_1, \beta_2, \dots, \beta_q)$. Model with q-1 covariates.
- $H_1: \beta = \beta_0 = (\beta_1, \beta_2, \dots, \beta_p)$. Model with p-1 covariates.
- Assume p > q so model under H₀ is reduced compared to model for H₁.
- Fit model under H₀ (H₁) and compute sum of squares S₀
 (S₁)
- Since model under H₁ has more parameters S₀ > S₁,
- Test H₀ with

$$F = \frac{(S_0 - S_1)}{(p - q)} / \frac{S_1}{(N - p)} = \frac{(D_0 - D_1)}{(p - q)} / \frac{D_1}{(N - p)} \sim F(p - q, N - p)$$

• Reject H_0 if $F_{obs} > F_{(1-\alpha)}(p-q, N-p)$

Residuals

- Based on $\hat{e}_i = Y_i \hat{Y}_i = Y_i x_i^T b = obs fitted$
- Standardized residuals: $r_i = \frac{\hat{e}_i}{\hat{\sigma}(1-h_{ii})^{1/2}}$; i = 1, 2, ..., N where $h_i i$ is i th element on the diagonal of $H = X(X^TX)^{-1}X^T$.
- Plots: Normal probability plots, independence, homoscedasticity, constant variance, etc.
- High leverage or influential: $h_{ii} > 2(p/N)$, $DFITS_i = r_i(h_{ii}/(1-h_{ii})^{1/2}$.
- Cook's distance: $D_i = (1/p)(DFITS)^2$. Large values means "influential".

$$D_i = \frac{1}{\rho}(b - b_{(i)})^T X^T X (b - b_{(i)})$$

and $b_{(i)}$ is the estimate of β without observation i.

