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ABSTRACT. This paper characterizes sequences of vectors that are the orbits of a linear operator and
sequences of vectors in a Hilbert space that are orbits of a unitary operator. The latter is applied to time
series. Sequences of vectors in a Hilbert space that generalize random walks are also shown to be the orbits
of a bounded linear operator.
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0. INTRODUCTION. An orbit of the operator T is, for some x, {T kx}∞k=0 or, if T is invertible, {T kx}k∈Z.
This paper considers, given a sequence of vectors {uk}, the existence of a linear operator U such that

uk = Uku0 for all k. In other words, we ask, when is a sequence of vectors the orbit of some linear operator
U?

Of more interest is to have a sequence be the orbit of a bounded operator U ; then the benefits of operator
theory can be invoked. For example, one then automatically has well-posedness: small mistakes in estimating
u0 lead to controlled errors in estimates of the entire sequence. In general, producing U could be said to be
taking us from local to global behaviour. Perhaps of the most interest is to have U unitary; then we may
apply the spectral theorem to obtain extensive information about the original sequence (see Theorem 2.3
and Example 2.5).

Section I is purely algebraic, characterizing sequences of vectors that are orbits of a linear operator.
Section II takes place on a Hilbert space, characterizing sequences that are orbits of a unitary operator
(Theorem 2.3) and considering sequences that are partial sums from an orthogonal sequence (Theorem 2.6).
These theorems are motivated by popular discrete stochastic processes; weakly stationary time series are a
special case of Theorem 2.3 (see Example 2.5), and random walks are a special case of Theorem 2.6 (see
Example 2.7).

Theorem 2.3 shows that a sequence {uk}k∈Z in a Hilbert space is the orbit of a unitary operator if and
only if 〈un, um〉 = 〈un+k, um+k〉 for all integers n, m, k. This is also equivalent to {uk}k∈Z being the moments
of an appropriate vector-valued measure, which in turn is equivalent to {〈uk, u0〉}k∈Z being the moments of
a positive measure.

This paper does not pretend to present new results about stochastic processes; however, as a special case
of Theorem 2.3, we obtain a fresh, simplified, and unified look at stochastic processes, including a very short
proof of the spectral representation of a weakly stationary time series (see Example 2.5).

I. ALGEBRAIC RESULTS. In the following two propositions, it should be clear how to replace {uk}∞k=0

with {uk}∞k=−∞.

Proposition 1.1. Suppose {uk}∞k=0 ⊆ X, a vector space. The following are equivalent.
(a) There exists a linear operator U on the span of {uk}∞k=0 such that U (uk) = uk+1, for k = 0, 1, 2, ...

(b) If, for αk ∈ C,
∑N

k=0 αkuk = 0, then
∑N

k=0 αkuk+1 = 0.

Proof: (a) → (b). 0 = U (0) = U
(∑N

k=0 αkuk

)
=
∑n

k=0 αkuk+1.

(b) → (a). U
(∑N

k=0 αkuk

)
≡
∑N

k=0 αkuk+1, for {αk}N
k=0 ⊆ C, unambiguously defines U, since, for N ≥ M,

N∑

k=0

αkuk =
M∑

j=0

βjuj

implies that (defining βj = 0 for j > M ) 0 =
∑N

k=0(αk − βk)uk, so that 0 =
∑N

k=0(αk − βk)uk+1, hence

N∑

k=0

αkuk+1 =
M∑

j=0

βjuj+1.

The linearity of U is immediate. �

In particular, in order that a sequence be an orbit of an operator, as in (a) of Proposition 1.1, it is sufficient
that the sequence be linearly independent. The following shows that it is almost necessary.

Proposition 1.2. Suppose {uk}∞k=0 ⊆ X, a vector space, and X0 ≡ span{uk}∞k=0. The following are equiv-
alent.

(a) X0 is infinite dimensional and there exists a linear operator U on X0 such that U (uk) = uk+1, for
k = 0, 1, 2, ...

(b) {uk}∞k=0 is linearly independent.
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Proof: (a) → (b). Suppose, for the sake of contradiction, there exists a nonnegative integer M, and complex
{αk}M−1

k=0 , such that

uM =
M−1∑

k=0

αkuk.

Then uM = U (uM−1) ∈ W ≡ span{u0, u1, ..., uM−1}. For 0 ≤ k < N − 1, U (uk) = uk+1 ∈ W. Thus U maps
W into itself. This implies that, for any n ∈ N,

un = Un(u0) ∈ W,

hence X0 ⊆ W, contradicting the fact that X0 is infinite dimensional.
(b) → (a). Proposition 1.1 implies that the desired operator U exists. The infinite dimensionality of X0 is
clear by definition. �

II. ORBITS OF BOUNDED OPERATORS ON A HILBERT SPACE. Throughout this section,
(H, 〈 〉) is a complex Hilbert space. Examples given are stochastic processes, which are sequences of vectors
in the (complexification of the) Hilbert space of random variables of finite variance with zero mean, inner
product

〈X, Y 〉 ≡ Cov(X, Y ).

Definition 2.1. We will call the sequence {uk}k∈Z ⊆ H unitary if

〈un, um〉 = 〈un+k, um+k〉 ,

for all n, m, k ∈ Z.

Definition 2.2. Let Z be a countably additive (in the norm of H) H-valued measure defined on the Borel
subsets of the complex plane, x ∈ H. We will say that Z is orthogonal with respect to x if Z(φ) = 0, Z(C) = x,
and

〈Z(A), Z(B)〉 = 〈Z(A ∩ B), x〉 ,

for all Borel sets A, B.
Note that, for any Borel A,

‖Z(A)‖2 = 〈Z(A), Z(A)〉 = 〈Z(A ∩ A), x〉 = 〈Z(A), x〉 ,

hence B 7→ 〈Z(B), x〉 is a positive Borel measure, and

‖Z(A)‖2 ≤ 〈Z(C), x〉 = ‖x‖2

for any Borel A. By [Di-U, Proposition I.1.11b], Z is of bounded semivariation (see [Di-U, Proposition
I.1.11a]), so that, for any Borel measurable complex-valued function f,

∫

C

f(z) dZ(z)

is defined as a limit of integrals of simple functions converging uniformly to f on the support of Z. See [Di-U],
especially [Di-U, Theorem II.4.1], for information about vector-valued measures.

In the following, Υ denotes the unit circle in the complex plane.

Theorem 2.3. Suppose {uk}k∈Z ⊆ H. Then the following are equivalent.
(a) {uk}k∈Z is unitary.
(b) There exists a unitary operator U on the closure of the span of {uk}k∈Z such that uk = Uku0, for all

k ∈ Z.
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(c) There exists a vector-valued measure Z orthogonal with respect to u0, supported on the unit circle Υ,
such that

un =
∫

Υ

zn dZ(z),

for all integers n.

(d) There exists a measure µ on the unit circle Υ such that

〈un, um〉 =
∫

Υ

zn−m dµ(z),

for all integers n, m.

Proof: (a) → (b). For αk ∈ C,

‖
n∑

k=m

αkuk‖2 =

〈
n∑

k=m

αkuk,

n∑

j=m

αjuj

〉
=
∑

k,j

αkαj 〈uk, uj〉 =
∑

k,j

αkαj 〈uk+1, uj+1〉

= ‖
n∑

k=m

αkuk+1‖2.

By Proposition 1.1, there exists an isometry U on the span of {uk}k∈Z such that U (uk) = uk+1, for all
integers k. This implies that uk = Uku0, for all integers k, and U is surjective (still on the span of {uk}k∈Z).
The operator U extends uniquely, in the usual way, to a surjective isometry, hence a unitary map, on the
closure of the span of {uk}k∈Z.
(b) → (c). By the spectral theorem (see [Ru, Theorem 12.23]), there exists a self-adjoint projection-valued
measure E such that

Uk =
∫

Υ

zk dE(z),

for all integers k. Since

uk = Uku0 =
∫

Υ

zk dE(z)u0,

our desired vector-valued measure is defined, for A a Borel set, by

Z(A) ≡ E(A)u0.

The properties of Z in Definition 2.2 follow from the properties of E : A 7→ E(A)x is a vector-valued measure,
for all x in the domain of U, E(φ) is the zero operator, E(C) = I, and E(A)E(B) = E(A ∩ B).
(c) → (d). For A a Borel set, define

µ(A) ≡ 〈Z(A), u0〉 .

The discussion after Definition 2.2 shows that this is a positive measure. A standard style of measure-
theoretic argument shows that

〈∫

Υ

f(z) dZ(z),
∫

Υ

g(z) dZ(z)
〉

=
∫

Υ

f(z)g(z) dµ(z), (*)

for Borel meaurable functions f, g on Υ, by first showing it for simple functions: if f =
∑

k αk1Ak and
g =

∑
j βj1Bj ,

〈∫

Υ

f(z) dZ(z),
∫

Υ

g(z) dZ(z)
〉

=
∑

k,j

αkβj 〈Z(Ak), Z(Bj〉 =
∑

k,j

αkβj 〈Z(Ak ∩ Bj), u0〉

≡
∑

k,j

αkβjµ(Ak ∩ Bj) =
∫

Υ

f(z)g(z) dµ(z),
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thus (*) holds for f, g simple. For general f, g, write both as the limits of simple functions to get (*).
In particular, since zm = z−m for z ∈ Υ,

〈un, um〉 =
〈∫

Υ

zn dZ(z),
∫

Υ

zm dZ(z)
〉

=
∫

Υ

zn−m dZ(z),

for any integers n, m.
(d) → (a). pretty obvious.

Remark 2.4. In Theorem 2.3, the closure of the span of {uk}k∈Z is then unitarily equivalent to L2(Υ, µ),
and U is unitarily equivalent to multiplication by z. This is another form of the spectral theorem, as stated in
[Re-S, Theorem VII.3] for self-adjoint operators, but for completeness I will put the straightforward argument
here.

Explicitly, define Λ, from the span of {uk}k∈Z into L2(Υ, µ) by

Λ

(
n∑

k=m

αkuk

)
≡

(
z 7→

n∑

k=m

αkzk

)
({αk}n

k=m ⊆ C),

then

‖Λ

(
n∑

k=m

αkuk

)
‖2 =

〈
Λ

(
n∑

k=m

αkuk

)
, Λ

(
n∑

=m

αjuj

)〉
=
∑

k,j

αkαj 〈uk, uj〉 =
∑

k,j

αkαj

∫

Υ

zk−j dµ(z)

=
∫

Υ

|
n∑

k=m

αkzk|2 dµ(z);

that is, Λ is an isometry onto the set of polynomials, a dense subspace of L2(Υ, µ), hence extends to a unitary
operator from the closure of the span of {uk}k∈Z onto L2(Υ, µ).

For the unitary equivalence of U, note that, for any integer k, z ∈ Υ,

(ΛUuk) (z) = (Λuk+1) (z) = zk+1 = z (Λuk) (z).

Example 2.5. A time series is (weakly) stationary (see [B-Da, Definition 1.3.2]) if and only if it is unitary,
as in Definition 2.2. (c) and (d) of Theorem 2.3 are precisely the spectral representation of the time series,
as constructed in [B-Da, Chapter 4]; Z of Theorem 2.3(c) is the “orthogonal increment process” associated
with the time series.

Note that the autogregressive moving average (ARMA) process ([B-Da, Definition 3.1.2])

Xk − φ1Xn−1 − · · · − φpXk−p = Zk + θ1Zk−1 + · · ·+ θpZk−q,

where k ∈ Z, p, q ∈ N, and {Zj}j∈Z is “white noise,” that is, orthogonal, with mean zero and constant
variance, may be written as

P (U−1Xk) = Q(U−1Zk),

where U is from Theorem 2.3, P and Q are polynomials

P (z) ≡ 1 − φ1z − · · ·φpz
p, Q(z) ≡ 1 − θ1z − · · · θqz

q .

The ARMA may then be immediately solved as

Xk ≡
P

Q
(U−1)Zk,

and constructed by the integral representations in Theorem 2.3(c) and (d), with µ a constant times Lebesgue
measure on the unit circle Υ, when P has no zeroes on the unit circle. More precisely, the sequence {Xk}k∈Z

is unitarily equivalent to the sequence of functions {(z 7→ P
Q (1

z ))}k∈Z in L2(Υ, µ).
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Theorem 2.6. Suppose {xk}∞k=0 is an orthogonal set and

un ≡
n∑

k=0

xk (n = 0, 1, 2, ...).

Then there exists linear U on the span of {xk}∞k=0 such that un = Unu0, for n ∈ N.
U is bounded if and only if

sup
j≥0

‖xj+1‖
‖xj‖

< ∞;

we then have

‖U‖2 = max{(1 +
‖x1‖2

‖x0‖2
), sup

j≥1

‖xj+1‖2

‖xj‖2
},

and U extends to {
∑∞

k=0 βkxk |
∑∞

k=0 |βk|2‖xk‖2 < ∞}.
Proof: Suppose, for complex {αj}N

j=0,

0 =
N∑

n=0

αnun =
N∑

n=0

n∑

k=0

αnxk =
N∑

k=0

(
N∑

n=k

αn

)
xk.

By orthogonality,
∑N

n=k αn = 0, for 0 ≤ k ≤ N. This implies that αn = 0, for 0 ≤ n ≤ N ; that is, {un}∞n=0

is linearly independent. By Proposition 1.2, there exists linear U, on the span of {un} such that un = Unu0,
for n a nonnegative integer.

Since x0 = u0 and xk = uk − uk−1, for k ∈ N, the span of {xk}∞k=0 equals the span of {un}∞n=0, with

Ux0 = x0 + x1, Uxk = xk+1(k ∈ N). (*)

For βk, k = 0, 1, 2, ..., complex,
∑∞

k=0 |βk|2 finite, denote

x =
∞∑

k=0

βkxk.

Let

K ≡ max{(1 +
‖x1‖2

‖x0‖2
), sup

j≥1

‖xj+1‖2

‖xj‖2
}.

By orthogonality and (*),

‖x‖2 =
∞∑

k=0

|βk|2‖xk‖2

and

‖Ux‖2 = |β0|2(‖x0‖2+‖x1|2)+
∞∑

k=1

|βk|2‖xk+1‖2 = (1+
‖x1‖2

‖x0‖2
)|β0|2‖x0‖2+

∞∑

k=1

(
‖xk+1‖2

‖xk‖2
})|βk|2‖xk‖2 ≤ K‖x‖2

Thus U is bounded when supj∈N
‖xj+1‖
‖xj‖ is finite, and ‖U‖2 ≤ K. Since

‖Ux0‖2 = ‖x0‖2 + ‖x1‖2 = (1 +
‖x1‖2

‖x0‖2
)‖x0‖2,

and, for j ∈ N,

‖Uxj‖2 = ‖xj+1‖2 =
(
‖xj+1‖2

‖xj‖2

)
‖xj‖2,

‖U‖2 ≥ K, so that ‖U‖2 = K, as desired. �
Example 2.7. A random walk is a stochastic process {un}∞n=0, where un =

∑n
k=0 xk, for {xk}∞k=0 indepen-

dent, hence uncorrelated, that is, orthogonal, random variables. In fact, the xks are commonly identically
distributed, so that ‖xj‖ = ‖xj+1‖, for all j, thus, for U as in Theorem 2.6, ‖U‖2 = 2.

Remark 2.8. One could also, in Theorem 2.6, use Proposition 1.2 to construct a linear operator T such
that Txk = xk+1, for k = 0, 1, 2, .... Then U = P + T, where P is the one-dimensional projection onto the
span of {x0} (see (*) in the proof of Theorem 2.6).
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