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Chapter 4. Gauss-Markov Model

4.1 Model Assumptions
So far we've approached the linear model only as a method of mathematical

approximation.  In this chapter, we pose the Gauss-Markov model which embodies the most
common assumptions for the statistical approach to the linear model, leading to the Gauss-
Markov Theorem.  The Gauss-Markov model takes the form
 (4.1)y X b eœ 
where  is the (N by 1) vector of observed responses, and  is the (N by p) known designy X
matrix.  As before, the coefficient vector  is unknown and to be determined or estimated.b
The main features of the Gauss-Markov model are the assumptions on the error :e
 E( )    and Cov( ) . (4.2)e 0 e Iœ œ 52

N
The notation for expectation and covariances above can be rewritten component by
component:
 ( E( ) ) i  component of E( ) E(e )e ei i

thœ œ
 ( Cov( ) ) i,j  element of covariance matrix Cov(e , e ),e ij i j

thœ œ
so that the Gauss-Markov assumptions can be rewritten as
 E(e ) 0, i 1, ..., Ni œ œ

 Cov(e , e )    for i j
0  for i ji j
2

œ
œ
Á5

that is, the errors in the model have a zero mean, constant variance, and are uncorrelated.  An
alternative view of the Gauss-Markov model does not employ the error vector :e
 E( ) ,  Cov( ) .y X b y Iœ œ 52

N
The assumptions in the Gauss-Markov model are easily acceptable for most practical
problems and deviations from these assumptions will be considered in more detail later.

Before we get to the Gauss-Markov Theorem, we will need some simple tools for
conveniently working with means and variances of vector random variables, in particular, a
linear combination of variables  where  is a fixed vector.  The rules are:a y aT

 i) E( ) E( )a y a yT Tœ
 ii) Var( ) Cov( ) a y a y aT Tœ
 iii) Cov( ,  ) Cov( ) , for fixed a y c y a y c a, cT T Tœ
 iv) Cov( ) Cov( ) , for fixed matrix .A y A y A AT Tœ
The key result is (iii), from which (ii) and (iv) follow easily, and just algebraic bookkeeping is
necessary:
 Cov( ,  )  Cov( a y , c y  )a y c yT T

i j
i i j jœ ! !

  a Cov(y , c y  )  a c Cov(y ,y ) Cov( ) .œ œ œ! ! !!
i j i j

i i j j i j i j
Ta y c

Example 4.1. Variance and covariance calculations.

Let Cov( ) , , , then we have
4 2 4 1 2
2 5 0 -1 0
4 0 25 2 1

y c aœ œ œ
Ô × Ô × Ô ×
Õ Ø Õ Ø Õ Ø
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 Var(y y 2y ) Var(  )  Cov( ) 1 2 3
T T  œ œ œc y c y c

c d c dÔ ×Ô × Ô ×
Õ ØÕ Ø Õ Ø1 -1 2 2 5 0 -1 1 -1 2 -3

4 2 4 1 10

4 0 25 2 54
121.  Alsoœ œ

 Cov(2y y ,y y 2y ) Cov( ,  )  Cov( ) 1 3 1 2 3
T T T   œa y c y a y c

œ œ œc d c dÔ ×Ô × Ô ×
Õ ØÕ Ø Õ Ø2 0 1 2 5 0 -1 2 0 1 -3

4 2 4 1 10

4 0 25 2 54
74.

Example 4.2. y X b e Variance of a least squares estimator.  Let , with the Gauss-Markovœ 
assumptions on , so that Cov( ) , and let  be an estimable function.  Then thee y I bœ 52 T

N -
variance of the least squares estimator follows the calculation (see Exercise 4.2)
 Var( ) Var( ( ) ) ( ) Cov( ) ( )^- - - -T T T g T T T g T T gTb X X X y X X X y X X Xœ œ
 X X X I X X X X Xœ œ- - - -T T g T 2 T gT 2 T T g

N( ) ( ) ( ) ( )5 5

Example 4.3. In the simple linear regression case in Example 3.1, we solved the normal
equations and found the usual slope estimate

 b (x x)y / (x x) .^ - -
2 i i i

i=1 i=1

N N
2œ  ! !

To compute the mean and variance of b , we have two routes.  One route is to treat b  as a^ ^
2 2

linear combination of the y 's:i

  b (x x)y / (x x)  [(x x)/S ] y  where S  (x x) .^ - - - -
2 i i i i i i

i=1 i=1 i=1 i=1

N N N N
2 2

xx xxœ   œ  œ ! ! ! !
Then E(b ) [(x x)/S ] E(y ) [(x x)/S ] (b b x ) (x x)x /S b b  and^ - - -

2 i i i 1 2 i i i 2 2
i=1 i=1 i=1

N N N
xx xx xxœ  œ   œ  œ! ! !

the usual slope estimate is unbiased.  Its variance can be found from the following algebra:

 Var(b ) [(x x)/S ] [(x x)/S ] Cov(y , y )^ - -
2 i j i j

i=1 j=1

N N
xx xxœ  ! !

  [(x x)/S ] Var(y ) (x x) /S /S ,- -œ  œ  œ! !
i=1 i=1

N N
i i ixx xx

2 2 2 2 2
xx5 5

employing the usual assumptions of constant variance and uncorrelated observations.  The
other route would be to follow the algebra in Example 4.2 above, and find the (2, 2) element
of

 ( ) .
N x
x x

x x
x N

5 52 T -1 2 i

i
2
i

-1

NS

2
i i

i
X X œ œ” • ” •!! ! ! !!52

xx

4.2. The Gauss-Markov Theorem
The goal throughout this chapter has been to show that the least squares estimators

derived back in Section 3.2 are the 'best' estimators in some sense.  The Gauss-Markov Model
that we've been talking about consists of just those set of assumptions that are sufficient.
Recall that a linear estimator takes the form c , and will be unbiased for estimable  a y bT T-
when
 E( c ) œa y bT T-
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for all , which leads to c 0, and .  In our One-Way ANOVA Model,b X aœ œ- T

y e , then y , (y 2y )/3 and y  are all unbiased estimators of .  In
_

ij i ij 11 11 12 11.œ    . ! . !
Simple Linear Regression, y x e , with x i, say, then y y  or y y  arei 0 1 i i i 2 1 3 2œ   œ  " "
both unbiased estimators of .  Which is a better estimator and how shall we measure?  When"1
two estimators are both unbiased, then the estimator with smaller variances is better, since
variance is a measure of variability around its mean.  Our least squares estimator of  is-Tb
-Tb b^ ^ where  is a solution to the normal equations.  Recall that if we construct all solutions to
the normal equations,
 ( ) ( ) ( ( ) )b̂ z X X X y I X X X X zœ  T g T T g T

then for estimable , ( ) is constant for all values of  -- all solutions to the normal^- -T Tb b z z
equations lead to the same least squares estimator.

Theorem 4.1. (Gauss-Markov Theorem) Under the assumptions of the Gauss-Markov Model,
 , where  E( )    and Cov( ) ,y X b e e 0 e Iœ  œ œ 52

N

if  is estimable, then  is the best (minimum variance) linear unbiased estimator^- -T Tb b
(BLUE) of , where  solves the normal equations^-Tb b
  .X X b X yT Tœ
Proof: d y b d X Suppose c   is another unbiased estimator of . Then c 0 and  œ œT T T T- -
since E(c  ) c  for all .  Now, œ  œd y d Xb b bT T T-

 Var(c ) Var( ) Var( )^ ^ œ œ  d y d y b d y bT T T T T- -

  Var( ) Var( ) 2 Cov( , )^ ^ ^ ^œ    - - - -T T T T T Tb d y b b d y b
  Var( ) Var( ) 2 ( )  ( ) (  ( )  )^ ^œ    - - - -T T T T T g T 2 T gT

Nb d y b X X X I d X X X5

  Var( ) Var( ) 2 ( ) (  ( )  )^ ^œ    - - - -T T T 2 T T g T T T gTb d y b X X X d X X X X5

  Var( ) Var( ) 2 ( ) (  )^ ^œ    - - - - -T T T 2 T T gb d y b X X5

 Var( ) Var( )^ ^œ  - -T T Tb d y b
Since  is estimable, we have ( ) and a projection ( )  onto it,  hence- -T T T T gTb X X X X X− V

X X X X d y bT T gT T T( ) .  So Var( ) Var( ), with equality iff^- - -œ  

 Var( ) Var( (  ( )  )  )    ( )   0.^d y b d X X X y d X X XT T T g T 2 T gT 2
 œ  œ  œ- - -5 l l

So equality occurs (and an estimator with equal variance) iff   ( )  or .^d X X X d y bœ œT gT T T- -
In other words, the best linear unbiased estimator is unique. 

Note that in the proof above, the crucial step is showing
 Cov( , ) 0, where .^ ^- - -T T T T Tb d y b a X œ œ

Now what is   estimating?  Notice that^d y bT T -

 E( ) ( ) 0^d y b a Xb X X X Xb b bT T T T T g T T T œ  œ  œ- - - -

so that  is an , and the Best Linear Unbiased Estimator^d y bT T - unbiased estimator of zero
-Tb̂ is uncorrelated with it.
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Result 4.1. b b  The BLUE  of estimable  is uncorrelated with all unbiased estimators of^- -T T

zero.
Proof: a y  First, characterize unbiased estimators of zero as c  such that T

  E( c ) c 0  for all , œ  œa y a Xb bT T

or c 0 and , or ( ).  Computing the covariance between  and  we^œ œ −X a 0 a X b a yT T T Ta -
have
 Cov( , ) ( )  Cov( ) ( )  0.^- - -T T T T g T 2 T T g Tb a y X X X y a X X X aœ œ œ5

The Gauss-Markov Theorem can be extended to the vector case.  Let the columns  of the-(j)

matrix  be linear independent such that  are linearly independent estimable functions,A -(j) Tb
then
 Cov( ) Cov( ( ) ) ( )  ( ) ( ) .^A A A A A AT T T g T 2 T T g T T gT 2 T T gb X X X y X X X X X X X Xœ œ œ5 5
If we have any set of unbiased estimator , say , that is, E( )  for all , thenA AT T T Tb C y C y b bœ
the difference in their covariance matrices
 Cov( ) Cov( )^C y bT T A
is nonnegative definite.  If  has full column rank and applying , we haveX IA œ

Cov( ) ( ) .  Moreover, in the full column rank model, the Gauss-Markov Theoremb̂ X Xœ 52 T -1

says that if  is any other unbiased estimator of , then~b b
 Cov( ) Cov( )~ ^b b
is nonnegative definite.

4.3. Variance Estimation
Throughout this discussion, our focus has been on estimating linear functions of the

coefficients  and no attention has been paid to the other unknown parameter .  So far,b 52

we've used  to estimate , as another version of the normal equations is .  AsP y b Xb P yX Xœ
the reader might guess, we will use ( ) , or, more specifically its sum of squaresI P y X
SSE ( )  to estimate .  To construct an unbiased estimator for , we will useœ l lI P yX

2 2 25 5
the following lemma.

Lemma 4.1. Z Z Z Let  be a vector random variable with E( )  and Cov( ) .  Thenœ œ. D
E( ) tr( ).Z AZ A AT Tœ . . D
Proof: Note that
 E(Z )(Z ) E(Z Z ) E(Z ) E(Z )  i i j j ij i j i j j i i j  œ œ   . . D . . . .
so that
 [ E( ) ] E(Z )(Z )  ,Z ZT

ij i i j j i j ij i jœ    œ . . . . D . .

or E( ) .  Now using the linearity of trace and expectation operations, we haveZ ZT Tœ .. D
 E( ) E( tr( ) ) E( tr( ) ) tr(  E( ) ) tr(  ( ) )Z A Z Z A Z A Z Z A Z Z AT T T T Tœ œ œ œ .. D
 tr( ) tr( ) tr( ).   œ  œ A A A A.. D . . DT T

Result 4.2. Consider the Gauss-Markov Model given in (4.1) and (4.2).  An unbiased
estimator of  is SSE/(N r), where SSE ( )  and r rank( ).^ ^ ^5 52 T2 T

œ  œ œ  œe e y I P y XX
Proof y Xb y I: Since E( ) , Cov( ) , applying Lemma 4.1 above yieldsœ œ 52

N
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 E( ( ) ) ( ) ( ) tr(( )( ) ) (N r).y I P y Xb I P Xb I P IT T 2 2
N œ    œ X X X 5 5

Dividing by the degrees of freedom parameter tr( ) (N r) associated withI P œ X
SSE ( )  gives the desired result.œ y I P yT

X

If we examine the regression sum of squares, SSR  , we find^ ^œ œy y y P yT T
X

 E(SSR) E(  ) tr(  ) r .œ œ  œ y P y b X P  Xb P I XbT T T 2 2
N

2
X X X 5 5l l

Little else can be said about  without further distributional assumptions, even when5̂
2

e  are iid (independent, identically distributed) since its variance depends on the third andi

fourth moments of the underlying distribution.  The algebra for computing Var( ) in terms of5̂
2

the third and fourth moments is given in an addendum to this Chapter.

4.4. Implications of Model Selection
In the application of linear models, sometimes the appropriate statistical model is not

obvious.  Even in designed experiments, researchers will debate whether to include certain
interactions into the model.  In the case of observational studies with continuous covariates the
problem of model selection becomes quite difficult and leads to many diagnostics and
proposed methodologies (see, e.g. Rawlings, Pantula, & Dickey, 1998).  In the context of this
book, however, we are concerned with the theoretical aspects that drive the practical model
selection.  At this point an important distinction must be made between the underlying true
model for the data, and the model that the researcher is employing.  In practice, of course, we
cannot know the true model.

The issue of model selection is often described as steering between two unpleasant
situations: , that is, including explanatory variables which are not needed, andoverfitting
underfitting, not including an important explanatory variable.  We will focus on the
implications of these two situations.

In the case of underfitting, also referred to as , we can write the modelmisspecification
for the truth as
 (4.3)y Xb eœ  (
where  is the design matrix for the model that the researcher is using, and  includes theX (
omitted variables and their coefficients.  Assume, as usual, E( ) and Cov( ) , ande 0 e Iœ œ 52

N
notice that if E( ) were not zero,  would capture its effect.  Consider first the least squarese (
estimators:
 E( ) ( ) E( ) ( ) ( )^- - - ( - (T T T g T T T g T T Tb X X X y X X X Xb b a Pœ œ  œ  X
where .  When the model is misspecified, the least squares estimators are :- œ X aT biased
 E( ) ( )^- - ( - (T T T T T g Tb b a P X X X œ X œ
where the bias above depends on:
 - the magnitude of the misspecified effect (
 - how much of that effect lies in ( ),  , andV X PX(
 - how much does it relate to the function at hand ( ) .- (T T g TX X X
If the missing signal  is orthogonal to ( ), then  and the estimation of coefficients( (V X P 0X œ
will be unaffected.  If the misspecification is due to omitted explanatory variables that are
uncorrelated with those included in , that is, , the estimates are not biased.X X 0T( œ
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The estimation of the variance is also affected by misspecification:
 E( ( ) ) ( ) ( )( ) tr(( )( ) )y I P y Xb I P Xb I P IT T 2

N œ     X X X( ( 5
 ( ) (N r). (4.4)œ   ( (T 2I PX 5
Therefore, the bias in the variance estimate disappears only when the misspecification
disappears.  Note that the bias in  is zero if and only if5̂

2

 ( ) 0, or ( ), or  for some .( ( ( (T I P X Xd d œ − œX V
In that case, the model is then
 ( + ) .y Xb Xd e X b d eœ   œ 
One view of misspecification is that the signal that is not accounted for  is partitioned into(
two pieces:
 ( ) ( ) ( )( )y Xb e P y I P y Xb P P e I P eœ   œ   œ     ( ( (X X X X X
One piece  in ( ) affects the estimation of ; the other part ( )  affects theP X b I PX X( - (V T 
estimation of the variance.

Example 4.4. Simple misspecification.  Suppose y x e , but the covariate x  isi 0 1 i i iœ  " "
ignored and we just estimate the mean and variance.  Here we have  x  and  so( "i 1 iœ œX 1
that y and E(y) x.  As for the variance, our usual variance estimate is^ _ _ _

" " "0 0 1œ œ 

5̂ (y y) /(N 1).  Applying (4.4), the size of the bias,
_2

i
i

2œ  !
 E( ) (x x) /(N 1)^ _

5 5 "
2 2 2 2

1
i

i œ  !
depends on the size of the departure of the mean response from the model, whose mean is
constant.

Example 4.5. Electricity problem.  Consider the analysis of electricity consumption, using the
following model as the true model for households:
 bill income persons area e (4.5)i 0 1 i 2 i 3 i iœ    " " " "
where bill monthly electric bill for household i, income monthly disposable income,i iœ œ
persons number in household, area heating living area of home or apartment.  In suchi iœ œ
analyses, often income is may not be available, so consider the consequences in estimating
the regression coefficients  and  when income is dropped from the model:" "2 3
 E(bill ) persons area . (4.6)i 0 2 i 3 iœ  " " "
In this situation, rows of  contain , , and1 persons areaX bc d c di i 0 2 3

T œ " " "
( "i 1 iœ income .  Another approach is to construct a regression model for the missing variable
income, using the remaining variables as explanatory variables:
 income persons area f . (4.7)i 0 1 i 2 i iœ   # # #
Combining the true model (4.5) and the expression above for the missing variable (4.7), the
misspecified model we are fitting (4.6) really now becomes
 bill ( ) ( )persons ( )area (e f ). (4.8)i 0 1 0 2 1 1 i 3 1 2 i i 1 iœ       " " # " " # " " # "
If income is not related to persons, then 0, and the estimate of  remains unbiased;# "1 2œ

however, if income is related to area, then E( ) , with the size of the bias"̂ " " #3 3 1 2œ 
depending on the importance of the missing variable  and the strength of the relationship"1
with the variable of interest .  Also note the expression for the error in the misspecified#2
model (4.8), e f , contains both the original error e , and the effect of the misspecification.i 1 i i "

The case of  can be viewed in the following context, by partitioning theoverfitting
explanatory variables into two groups or blocks:
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 y X b X b eœ  1 1 2 2
where the second group of explanatory variables is not needed, since .  To makeb 02 œ
comparisons, let us simplify matters and assume the Gauss-Markov model and that both X1
and (  ) have full column rank.  Using the smallest model with a design matrix of X X X Xœ 1 2 1
leads to the least squares estimator we will denote as , constructed as~b1
    ( )  .~b X X X y1 1

T -1 T
1 1œ

Using previous results, we can show that this estimator is unbiased, E( )  , and its~b b1 1œ
covariance matrix is
 Cov( ) ( ) .~b X X1 1

2 T -1
1œ 5

Including the second block of explanatory variables into the model that the researcher fits
leads to the least squares estimators

 . ^

 ^– — ” • ” •b
b

X X X X X y
X X X X X y

1

2

T T T
1 1 11 2
T T T
2 2 21 2

-1

œ

Again, it is easy to show similar results for this estimator:

 E[ ]  and Cov(  ) .   ^ ^

  ^ ^ – — – —” • ” •b b b
b b0

X X X X
X X X X

1 1 1

2 2

2
T T
1 11 2
T T
2 21 2

-1

œ œ 5

Using Exercise A.74 (partitioned inverse) we can show  
 Cov( ) ( ) ( ) [ ( ) ] ( ) (4.9)b̂ X X X X X X X I P X X X X X1 1 1 2 2 1 1

2 T -1 2 T -1 T T -1 T T -1
1 1 1 2 2 1œ  5 5 X1

and so that the penalty for including the second block of variables  is increased variance inX2
the coefficient estimators.

Denoting rank( ) r  and rank( ) r, then the variance estimators are bothX X1 1œ œ
unbiased
 E[ ( ) ]/(N r )y I P yT 2

1  œX1 5
 E[ ( ) ]/(N r)y I P yT 2  œX 5
since there is no misspecification, and the only difference betweeen the two estimators is in
the degrees of freedom.  Except for some applications where error degrees of freedom are
scarce, there is little lost in variance estimation by overfitting.

Example 4.6. No intercept.  Suppose we have the simple linear regression problem, with
y x e , but 0.  The variance of the least squares estimate of the slope,i 0 1 i i 0œ   œ" " "
where we include the intercept is / (x x) .  If we drop the intercept, the slope estimator

_
52 2

i
i! 

is simply x y / x  and its variance is / x , which is smaller, since x (x x) .
_! ! ! ! !

i i i i i
i i ii i i

2 2 2 2 25  

See also Exercise 4.7.

Returning to the coefficient estimation, examination of the difference of the two
covariance matrices shows the effect of including the second block of variables:
 Cov( ) Cov( ) ( ) [ ( ) ] ( )^ ~b b X X X X X I P X X X X X1 1 1 2 2 1 1

2 T -1 T T -1 T T -1
1 1 2 2 1 œ 5 X1

If the second block of explanatory variables is orthogonal to the first, that is, , thenX X 0T
1 2 œ

the estimators not only have the same variance, they are the same estimators, as  becomesX XT

block diagonal .  As  gets closer to ( ), then ( )  gets smaller, and, when X X X I P X2 1 22
TV  X1

inverted, causes the Cov( ) to explode.  This condition, known as , is theb̂1 multicollinearity
other feared consequence in model selection.  One signal for severe multicollinearity is the
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appearance of unexpected signs of coefficient estimators due to their wild inaccuracy.
Without multicollinearity, and with enough degrees of freedom to estimate the variance, there
is little to be lost in overfitting.  With multicollinearity, overfitting can be catastrophic.

One measure of the effect of multicollinearity is called the  orvariance inflation factor
VIF.  If the explanatory variables were mutually orthogonal, then, following, say, Example
4.3, then Var(b ) /S  where S (X X ) .  In practice, when the explanatory^ _

j xx xx ij .j
2 2

i
œ œ 5 !

variables are not orthogonal, then the defining expression is:
 Var(b ) (VIF) /S (4.10)^

j xx
2œ ‚ 5

This relationship arises from the other form of the partitioned inverse result (Exercise A.74).
Without loss of generality, consider j 1, and partition the design matrix  as above, withœ X
just the first column in , and all of the other columns in .  The employing the other formX X1 2
of the partitioned inverse result, we have
 Cov( ) [ ( ) ] . (4.11)b̂ X I P X1 1

2 T -1
1œ 5 X2

Putting (4.10) and (4.11) together, we find that
 VIF (4.12)œ œS

( )
1

1 R
xx

1
T

2 1 j
2X I P X X

where R  is what we would have for R  if we took column j for the response vector, andj
2 2

employed the remaining explanatory variables.  Clearly, when an explanatory variable can
itself be closely approximated by a linear combination of other variables, then R  will be closej

2

to one and VIF very large, indicating a serious multicollinearity problem.

The quantity ( )  is employed by some algorithms, e.g. the sweep operatorX I P X2
T

2 X1

in SAS (see, e.g. Goodnight(1979) or Monahan(2001)), to determine rank of  or  inX X XT

regression problems.  In practice, this works quite well, although the finite precision of
floating point arithmetic limits its effectiveness.  When most of the columns of the design
matrix  are composed of  0, 1, or some small integer, the computed elements ofX
X I P X2

T
2( )  can be zero or nearly so.  However, in the case of continuous covariates, X1

X I P X2
T

2( )  will rarely be zero even in the case of perfect collinearity due to the effects of X1

rounding error.  In practice, most computer software for regression determine rank by testing
whether ( ) , or something similar, is close to zero.  While the mathematicsX I P X2

T
2 X1

presented here appears to proceed smoothly in the case of dependence in the columns of  --X
by using the generalized inverse when the inverse doesn't exist -- the reality is that the effect is
dramatic: certain components or functions of  are no longer estimable.  The practical matterb
is that the rank of the design matrix should be known in advance by the researcher.  If the
computer software determines a smaller rank than expected, then either an unexpected
dependency or catastrophic multicollinearity problem exists.  Finding a larger rank than
expected indicates the inability of the software to detect dependence.   (See Exercises 4.15,
4.16)

4.5 The Aitken Model and Generalized Least Squares
The Aitken model is a slight extension of the Gauss-Markov Model in that only

different moment assumptions are made on the errors.  The Aitken Model takes the form
 , where E( ) , but Cov( )y Xb e e 0 e Vœ  œ œ 52
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where the matrix  is a KNOWN positive definite matrix.  In this way, it is similar to theV
Gauss-Markov Model in that the covariance is known up to a scalar .  If , then we52 V Iœ
have the Gauss-Markov model.  In practice, however, usually  is unknown, or has just a fewV
parameters; this case will be addressed later.  In an Aitken model, the least squares estimator
- - -T T Tb b b^ of an estimable function  may no longer be the BLUE for .  We will now
construct a generalized least squares (GLS) estimator of  and show that it is the BLUE for-Tb
-Tb.

The crucial step in GLS is the construction of a square root of the unscaled covariance
matrix, that is, find  such that .  As discussed in Appendix A, there are twoR RVR IT

Nœ
approaches for constructing a square root of a positive definite matrix, Cholesky factorization
and .  The Cholesky factorization writes  as the product of a lowerSpectral decomposition V
triangular matrix  and its transpose, .  Taking this route, use .  The spectralL V LL R Lœ œT -1

decomposition uses the eigenvector-eigenvalue decomposition  where  is theV Q Qœ A AT

diagonal matrix of eigenvalues, and  is the (orthogonal) matrix of eigenvectors stacked asQ
columns.  This route suggests taking , so that the 'square root' matrix isR Q Qœ A-1/2 T

symmetric in this case.  Note that we will insist that  be positive definite, so that  or  areV L A
nonsingular.  If  were singular, then there would be a linear combination of observationsV
with zero variance, and this case would more properly be treated as a linear contraint.

Using the matrix , we can reformulate the Aitken Model using a tranformed responseR
variable
 z Ry RXb Reœ œ  , or
 , where E( )  and Cov( ) , (4.13)z Ub f f 0 f Iœ  œ œ 52

N
which looks just like the Gauss-Markov Model.  Now we can tackle all of the same issues as
before, and then transform back to the Aitken model:
 a) Estimability. The linear function  is estimable if  is in the column space of the- -Tb
transpose of the design matrix.  Here this means ( ) ( ) ( ) since  is- − œ œV V VU X R X RT T T

nonsingular.  From another viewpoint, estimability did not involve the second moment
anyway, so that estimability should not be affected by the fact that  is not a constant diagonalV
matrix.
 b) Linear estimator.  Note that any linear estimator  that is linear in  is also ag h y z T

linear estimator  and vice versa.  In other words, the class of linearg h Ry g a y œ T T

estimators in  is the same as the class of linear estimators in .z y
 c) Generalized Least Squares Estimators.  In the transformed model, the normal
equations are
 (4.14)U U b U zT Tœ
and so the least squares estimator from (4.13) solves (4.14) above.  However, these normal
equations can be easily rewritten as
 ( ) ( ) ( ) ( ), orRX RX b RX RyT Tœ
 (4.15)X V X b X V yT -1 T -1œ

which are known as the , and the solution to (4.8) will be denoted as , a^Aitken equations bGLS
generalized least squares estimator of .   When needed for clarity, the solution to the usualb
normal equations will be denoted by , for .  From^X Xb X y bT T

OLSœ Ordinary Least Squares
Section 4.1, we should expect that  is BLUE for , but this will be examined^- -T T

GLSb b
further.
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Theorem 4.2 y Xb e. (Aitken's Theorem)  Consider the Aitken Model given by , whereœ 
E( ) , and Cov( ) , where  is a known positive definite matrix.  If  ise 0 e V V bœ œ 52 T-

estimable, then  is the BLUE for .^- -T T
GLSb b

Proof: Follows from (a), (b), (c), and the Gauss-Markov Theorem.

From Chapter 2, we know that  minimizes a sum of squares, in particular,b̂GLS
   ( ) ( ) ( ),l l l lz Ub R y Xb y Xb V y Xb œ  œ  2 2 -1

so that this sum of squares is often called  or .weighted least squares generalized least squares
In the simplest case, say, simple linear regression and  diagonal, then we haveV
 ( ) ( )   (y x )y Xb V y Xb  œ  -1 2

i

1
V i 0 1 i!

ii
" "

and the name should be apparent.
 c) Estimation of .  Since the transformed model follows the Gauss-Markov52

assumptions, the estimator constructed in Section 4.3 is the natural unbiased estimator for :52

 ( ) ( ) / (N r) ( ) ( ) / (N r)^ ^ ^ ^52 T -1
GLS GLS GLS GLS GLSœ    œ   z Ub z Ub y Xb V y Xb

Example 4.7. Heteroskedasticity.
Consider the simple linear regression model through the origin with heteroskedastic (different
variances) errors, with the variances proportional to the squares of the explanatory variables:
 y  x e ,i i iœ "
where E(e ) 0, Var(e ) x , e  uncorrelated and x 0.  Notice thati i i i

2 2
iœ œ Á5

 Var(e /x )i i
2œ 5

so that the obvious step is to transform by dividing by x :i
 z y /x e /x .i i i i iœ œ "

The BLUE of , then is z   (y /x ), and Var( ) /N.  For comparison,^ ^_
" " " 5GLS GLSN

i
i i

2œ œ œ" !
"̂ x y  / x , and see Exercise 4.4.OLS

i i
i i

2
iœ ! !

Example 4.8. Autoregressive errors.
Suppose we have the usual multiple regression model
 y e ,i ii

Tœ x b
where the errors have the usual zero mean E(e ) 0, but the covariance structure induced byi œ
the model
 e e ai i-1 iœ 3
where the a 's are uncorrelated with zero mean and variance .  Then it can be shown thati

25
Var(e ) /(1 ) and the covariance matrix of the original errors e  is given byi i

2 2œ 5 3

 Cov( ) Cov( )  

1 ...
1 ...

1 ...
... ...

... 1

y e Vœ œ œ5

3 3 3

3 3 3

3 3
3

3 3

2
1

2 N-1

N-2

2

N-1

5
3

2
2

Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

so that V /(1 ).  This error structure is known as a first-order  model.ij
|i-j| 2œ 3 3 autoregressive

The following transformation, known as , restores the usualCochrane-Orcutt transformation
Gauss-Markov assumptions:
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 z 1   y 1   1   e1 1 12 2 2
1
Tœ  œ   È È È3 3 3x b

 z y  y  e  ei i i-1 i i-1i i-1
T Tœ  œ   3 3 3x b x b

    (  ) a a  for i 2, ..., N.œ   œ  œx x b u bi i-1 i i
T T

i3
The single parameter  of this model is not usually known, and the usual approach is to begin3
with ordinary least squares to estimate , estimate  from the residuals, do GLS withb 3
estimated  to reestimate , reestimate , and iterate until convergence.  This procedure is3 3b
known as estimated generalized least squares (EGLS) since  is estimated.3

Finding the BLUE estimator under the Aitken model really is not difficult, as you've
seen; all that was necessary was to transform  and  to  and  so that the Gauss-Markovy X z U
assumptions held.  A more interesting pursuit, however, is the set of conditions that make the
usual  to be BLUE under the Aitken model assumptions.b̂OLS

Result 4.3. t y t y t y (Generalization of Result 4.1) The estimator  is the BLUE for E( ) iff  isT T T

uncorrelated with all unbiased estimators of zero.
Proof: a y t y a y t y (If) Let  be another unbiased estimator of E( ), that is, E( ) E( ).  ThenT T T Tœ
 Var( ) Var( )a y t y a y t yT T T Tœ  
  Var( ) Var( ) 2 Cov( , )œ    t y a y t y t y a y t yT T T T T T

Since  is an unbiased estimator of zero, the covariance terms drops out of thea y t yT T
equation above, leading to
 Var( ) Var( ) Var( ) Var( ).a y t y a y t y t yT T T T Tœ    
(Only if) Suppose there is another unbiased estimator of zero , so that E( ) 0 whereh y h yT T œ
h 0 t y h y h y t yÁ œ œ, and let Cov( , ) c and Var( ) d.  Then consider the estimator of E( )T T T T

given by
 (c/d) .a y t y h yT T Tœ 
This estimator is also unbiased for E( ).  Its variance ist yT

 Var( ) Var( ) (c/d) Var( ) 2 (c/d) Cov( , )a y t y h y t y h yT T 2 T T Tœ  
 Var( ) c /d Var( ).œ  Ÿt y t yT 2 T

So that if  is the BLUE, then c 0, otherwise the estimator  constructed above willt y a yT Tœ
also be unbiased and have smaller variance. 

Corollary 4.1. t y t y Under the Aitken Model, the estimator  is the BLUE for E( ) iffT T

Vt X− V( ).
Proof: t y t y t y h y  From the preceding Result 4.3,  is the BLUE for E( ) iff Cov( , ) 0 forT T T T œ
all  such that E( ) 0.  Note that if  is an unbiased estimator of zero, then we haveh h y h yT Tœ
 E( ) 0 for all .h y h Xb bT Tœ œ
This means  or ( ).  Now Cov( , ) , and this is zero iff  ish X 0 h X t y h y t Vh hT T T T 2 Tœ − œa 5
orthogonal to , or, since ( ), ( ). Vt h X Vt X− −a VT

Corollary 4.2. b a P y X a Under the Aitken Model,  (that is, ) is the BLUE for^- -T T T
OLS œ œX

an estimable  iff   for some .-Tb VP a Xq qX œ
Proof: t P a Let  in Corollary 4.1.œ X

Result 4.4. b Under the Aitken Model, all OLS estimators are BLUE (that is, each  is the^-T
OLS

BLUE for the corresponding estimable ) iff there exists a matrix  such that .-Tb Q VX XQœ
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Proof: VX XQ b X X X y t y t X X X (If )  First write ( )  for  ( )  so that^œ œ œ œ- - -T T T g T T T g
OLS

- -T T
OLSb b Vt X VX XQ^  is the BLUE for iff ( ).  Now if , then− œV

  ( ) ( ) ( )Vt VX X X XQ X X Xœ œ −T g T g- V
and employ Corollary 4.2.
(Only if) Now if  is the BLUE for , take  as column j of , so that^- - -T T (j) T

OLSb b X X
t X X X Vt Xq(j) T g (j) (j) (j)œ œ( ) , then from Corollary 4.2, .  Stacking these columns side by-
side to form matrices  and , we haveT Q
 ( ) . VT VX X X X X VX XQœ œ œT g T

Example 4.9. y Xb e Consider the regression problem  with an equicorrelated covarianceœ 
structure, that is Cov( ) , and with an intercept and the followinge V I 1 1œ œ 5 72 2 T

N N N
partitioning:

         b 1
p 1X b1 X bœ œ


c d ” •* 1

2

In this case, is  the BLUE for estimable ?  It will be if we can find  such that^- -T T
OLSb b Q

VX XQœ .
 (  )   N,VX I 1 1 1 X 1 1 X 1 1 Xœ  œ  5 7 5 7 5 72 2 T

N N N
* 2 2 2 * 2 T *

N N N Nc d c d
   Q QXQ 1 X 1 X Q 1Q X QQ

Q Qœ œ  c d c d” •* * *11 12

21 22
11 21 12 22

Matching the first entries suggests choosing Q N  and , and matching the11 21
2 2œ  œ5 7 Q 0

second yields  and .  See also Exercise 4.8.Q 1 X Q I12 22 N
2 T * 2œ œ7 5

Example 4.10. Seemingly Unrelated Regression. Suppose we have m individuals, each with
n responses following regression models:
 , i 1, ..., my X b e(i) (i) (i) (i)œ  œ
where  and  are n 1,  is n p, and  is p 1.  The covariances in the errors ey e X b(i) (i) (i) (i) (i)‚ ‚ ‚
ties these regressions together:
 Cov( , ) .e e I(i) (j)

ij nœ 5
For example, the individuals may be companies, and the responses are quarterly sales which
would be contemporaneously correlated.  We can write this as one large linear model by
combining these pieces:

  , , , ... ... ... ...

... ...

y X b V

y X 0 0 b
y 0 X 0 b

y 0 0 X b

I I I

œ œ œ œ

Ô × Ô × Ô × Ô ×Ö Ù Ö Ù Ö Ù Ö ÙÖ Ù Ö Ù Ö Ù Ö Ù
Õ Ø Õ Ø Õ Ø Õ Ø

(1) (1) (1)

(2) (2) (2)

(m) (m) (m)

2

11 12 1mn n n

215

5 5 5
5 I I I

I I I

n n n22 2m

m1 m2n n mm n

5 5

5 5 5
... ...

...
What are the best estimators in this case?  Or, more specifically, when are the least squares
estimators BLUE?  In general, the least squares estimators are not always the best.
However, some specific cases are interesting.

If 0 for i j, then the problem completely decouples into m individual least5ij œ Á
squares problems and, not surprisingly, the least squares estimators are BLUE.  The other
interesting case has , that is, the design matrices are the same for each company.X X(i) (1)œ
In this case, we can show , so that taking , the least squares estimators areVX XV Q Vœ œ
BLUE.  This latter situation is known as , although it is usually writtenmultivariate regression
differently.
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4.6. Summary

1) The Gauss-Markov assumptions on the errors in a linear model are introduced.  They
specify that the errors have zero mean, are uncorrelated and have constant variance.

2) The Gauss-Markov Theorem says that the least squares estimator  has the smallest^-Tb
variance of all linear unbiased estimators of an estimable function  when the Gauss--Tb
Markov assumptions hold.

3) The estimator SSE/(N r) ( ) /(N r) is an unbiased estimator of the5̂
2 Tœ  œ  y I P yX

variance parameter .52

4) The consequences of underfitting or misspecification and overfitting are evaluated.

5) Generalized least squares estimators are introduced for cases where the Gauss-Markov
assumptions on the errors may not hold.

4.7. Exercises
1)  Suppose the random variable Y  represents the number of votes that a candidate receives ini
county i.  A reasonable model would be that Y  would be independent binomial randomi
variables with parameters n number of voters in county i and p Pr(voter correctly votesi œ œ
for candidate).
a) What are E(Y ) and Var(Y )?i i
b) Write this as a linear model.
c) Find the BLUE of p in this situation.

2) Under the Gauss-Markov Model, show that for  such that  is estimable,- -Tb
Var( ) ( )  does not depend on the choice of generalized inverse ( ) .^- - -T 2 T T g T gb X X X Xœ 5

3) In Example 4.6 (heteroskedasticity) find Var( ) and compare it to Var( ).^ ^b bOLS GLS

4) Consider the heteroskedasticity situation in Example 4.6, but suppose Var(e ) x  wherei i
2œ 5

x 0.  Find Var( ) and compare it to Var( ).^ ^
i OLS GLS b b

5) Find the Cholesky factor of  in Example 4.6.V

6) Suppose we have the simple linear regression model
 y x e ,    i 1, ..., Ni 0 1 i iœ   œ" "
where e  are uncorrelated and Var(e ) .  Consider the instrumental variables estimator ofi i

2œ 5
the slope
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 b  (z z)(y y) /  (z z)(x x)~ _ _ _ _
1 i i i i

i=1 i=1

N N
œ    ! !

where z , ..., z  are known constants.1 N
a) Is b  an unbiased estimator of the slope parameter ?~

1 1"
b) Find the variance of b .~

1

c) We know that taking z x  gives our familiar least squares estimator b .  Find the ratio of^
i i 1œ

the two variances: Var(b ) / Var(b ) and show that it is less than or equal to 1 (b  is BLUE).^ ^~
1 1 1

You may find the following results useful:    (x x)  (z z) 0
_ _! !

i=1 i=1
i i œ  œ

  (x x)(y y)  (x x)y  x (y y)
_ _ _ _! ! !

i=1 i=1 i=1
i i i i i i  œ  œ 

7) In a reversal of Example 4.6, suppose we have the simple linear regression problem, with
y x e , and the usual Gauss-Markov assumptions.  Compute the bias in the slopei 0 1 i iœ  " "
estimator x y / x  when 0.! !

i i
i i 0i

2 " Á

8) (Compare with Example 4.9 (equicorrelation))  Consider the linear model y Xb eœ 
where Z  (Z is a scalar random variable) where Cov( ) , Var(Z) , and Ze u 1 u Iœ  œ œ5 72 2

N
and  are uncorrelated.  Find  and derive conditions under which the OLS estimator of everyu V
estimable function is BLUE.

9) Suppose y x x e , where E(e ) 0, Var(e )  and the e  arei 0 1 i 2 i i i i
2 2
iœ    œ œ" " " 5

independent.  But suppose we fit a simple linear regression model: E(y ) x .  Toi 0 1 iœ " "
illustrate, consider the following simple situation: x i, i 1, 2, ..., n 8, for 2,i 0œ œ œ œ"
" "1 2œ 3.  Consider also various values of , say, -2 to 4 by ones.  (Hint: I suggest using PROC
REG for computations.)
a) Compute the bias in the least squares estimators, , .^ ^" "0 1

b) Compute the bias in our usual variance estimate .5̂
2

c) Would your results change if the values of  and  were changed?  Explain." "0 1

10) Consider the simple linear regression problem,  y x e , for i 1, ..., 4 ni 0 1 i iœ   œ œ" "
with x i and the Gauss-Markov assumptions on e .  A direct route for getting the BLUEi iœ
would be to construct ALL linear unbiased estimators and then directly minimize the variance.

Write the unbiased estimators as a  y  and focus on estimating the slope .!
i=1

n
i i 1"

a) Write the two linear equations in the a 's that express constraints so that a  y  is ani i i!
unbiased estimator of ."1
b) Construct the family of solutions to the equations in (a). (Hint: you'll need two z's)  This
will parameterize all unbiased estimators with just two parameters.
c) Compute the variance of the estimators in (b) and minimize the variance.  You should get a
familiar solution.

11) Prove the Gauss-Markov Theorem directly, that is, by constructing all linear estimators
a y b a zT T which are unbiased for  (find a family of solutions ( )), and then minimizing the-
variance .52 Ta a
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12) Show that if  is square and nonsingular and  then .  Do you needR R VR I V R RT -1 Tœ œ
the assumption that  is square? nonsingular?R

13) Let ( ) .  Show that  is a projection onto ( ).  (This is difficultQ X X V X X V Q Xœ T -1 g T -1 V
without the Hint: first factor  with Cholesky and work with a symmetric versionV LLœ T

Q L QL* )œ -1

14) Let  be the N N covariance matrix for a first order moving average process:52V ‚
  V 1     if i jij

2œ  œ!
  V             if | i j | 1ij œ  œ!
  V 0            if | i j | 1ij œ  
Notice that V is banded with zeros outside of three bands, on the diagonal and above and
below the diagonal.
a) Show that the Cholesky factor of  is also banded (lower triangular, with nonzeros on theV
diagonal, and below the diagonal).
b) Find the limit of the two nonzero elements in row N as N .p_

15) Consider the multiple regression problem including an intercept with the following list of
explanatory variables:
 c1 cos(2 i/7) s1 sin(2 i/7)œ œ1 1
 c2 cos(2 2i/7) s2 sin(2 2i/7)œ œ1 1
 c3 cos(2 3i/7) s3 sin(2 3i/7)œ œ1 1
 c4 cos(2 4i/7) s4 sin(2 4i/7)œ œ1 1
 c5 cos(2 5i/7) s5 sin(2 5i/7)œ œ1 1
 c6 cos(2 6i/7) s6 sin(2 6i/7)œ œ1 1
for i 1, ..., N.œ
a) Show thtat the last six variables (c4, s4, ..., s6) are linearly dependent on the first six (c1, s1,
..., s3) and an intercept.
b) Test whether the regression software that you commonly use can detect dependencies
among the explanatory variables, using 3.1416 as your approximation for , and various1
values of N.
c) Repeat this exercise with a cruder approximation 3.14 for .1
d) Repeat this exercise with 4 in place of 7 (that is, 2 i/4, 4 i/4, etc.).1 1

16) Using the variables (1, c1, s1, c2, s2, c3, s3) from Exercise 15 above, is there any
multicollinearity problem?

17) Consider the usual simple linear regression situation
 E(y )  x  for i 1, ..., 5  with x ii i iœ  œ œ! "
 Var(y )   and y  are independenti i

2œ 5
Note the simple form of x  and that we have only 5 observations.i

a) Find the least squares estimator  and express it in terms of  by explicitly giving ."̂ t y tT

b) Show that  is unbiased and find its variance."̂
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c) Show that (y y )/2 and (y y )/4 are also unbiased for  and also find the^ ^# ( "œ  œ 4 2 5 1
variance of each.
Consider now another estimator of the slope parameter  the estimator c (1-c) .^ ^ ^" $ # (œ 

d) Find the variance of  in terms of c and .$̂ 52

e) Find the value of c that minimizes the variance found in part d).
f) Suppose we knew that 0, would  still be BLUE?^! "œ

18) Under Gauss-Markov assumptions, show that if cov(  ,  ) 0 for all , then  is^a y d e d a yT T Tœ
the BLUE for its expectation.

19) Under the Aitken Model, with Cov( ) , if cov(  ,  ) 0 for all , then is ^e V a y d e d a yœ œ52 T T T

still the BLUE for its expectation?

20) Prove Aitken's Theorem (Theorem 4.2) directly.  Consider the Aitken Model, and let -Tb
be estimable.  Let  be a linear unbiased estimator of .  Show thata y bT T-

 Var( ) Var( ) Var( ).^ ^a y b a y bT T T T
GLS GLSœ  - -

21) Let Y , i 1, .., N be iid exponential( ), that is, each has density f(y) e  for y 0.i
-1 -y/œ œ - - -

a) Find E Y  for k 1, 2, 3, 4.k
i œ

b) Find the variance of the usual variance estimator, Var( (Y Y) /(N 1) ).
_!

i
i

2 

22) Recall the analysis of the US population in Exercise 3.23.  Find the VIF's for each of the
coefficients in the uncentered model, using t 1790 through 2000.  If you center usingœ
c 1890, what happens to the VIF's?œ

23) Prove that if  is positive definite, then ( ) ( ).V X V X XV VT -1 Tœ

24) Ridge regression is a technique that has been recommended by some statisticians to
address multicollinearity problems arising in multiple regression.  In our usual linear models
framework with E( ) , and Cov( ) , the ridge regression estimator takes the formy Xb y Iœ œ 52

N
 ( k )~b X X I X yœ T -1 T

p
where k 0.  Assume here that the  has full column rank, that is, rank( ) p. œX X
a) Find E( ).~b
b)  Is  an unbiased estimator of  ?~

- -T Tb b
c) Find Cov( ).~b
d) Mean squared error is commonly used to assess the quality of an estimator.  For the ridge
regression estimator , find its mean squared error~b
 E(  ) E( ( ) ( ) ).~ ~ ~¼ ¼b b b b b b œ  

2 T

Consider applying ridge regression to a multivariate regression problem with two centered
covariates ( x z 0), taking the form! !i iœ œ
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1 x z
1 x z
... ... ...
1 x z

Xb œ

Ô ×Ö ÙÖ Ù
Õ Ø

Ô ×
Õ Ø

1 1

2 2

N N

0

1

2

"
"
"

yielding the inner product matrix

 .
N 0 0
0 x x z
0 x z z

X XT 2
i i i

i i
2
i

œ
Ô ×
Õ Ø! !! !

For simplicity, suppose N 10,   x z 5 and x z 4.œ œ œ œ! ! !2 2
i i i i

e) Find the covariance matrix of our usual least squares estimator ( )  in thisb̂ X X X yœ T -1 T

situation.
f) Find a value of k such that one component of  (your choice of component) has smaller~b
variance than the corresponding least squares estimator.
g) Part (f) looks like it violates the Gauss-Markov Theorem.  Does it?
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4.11. Addendum -- Variance of variance estimator

Computing the Var( ) requires considerable detail, athough the result is none too5̂
2

deep.  The main result will be given with some generality.

Result 4.9. P Let  be a symmetric matrix, and e be a random vector.  The components e  are iidi
with the following four moments: E(e ) 0, Var(e ) E(e ) , E(e ) , E(e ) ,i i 3 4i i

2 2 3 4
iœ œ œ œ œ5 # #

then
 Var( ( ) ( ) ) 4 ( ) 4   P  P. . . .  œ e P e PT 2 T 2

3 i ii ji
i j

5 # .! !
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     2 P ( )P  5 # 54 2 4 2

i j
ij ii

i
4! !

Á

Proof: Begin with
  Var( ( ) ( ) ). .  œe P eT

          E[( ) ( )( ) ( )] E[( ) ( )]. . . . . .      e P e e P e e P eT T T 2

Note that  E[( ) ( )] tr( ) from Lemma 4.3.  Now write out all 16. . . .  œ e P e P PT T 25
terms of E[( ) ( )( ) ( )] as. . . .   e P e e P eT T

  E[ ] ( ). .. . . .T T T 2P P Pœ
  E[ ] 0. . .T TP e P œ
  E[ ] 0. ..T TP Pe œ
  E[ ] ( )E[ ] ( ) trace( ). . . . . .T T T T T 2P e Pe P e Pe P Pœ œ 5

  E[ ] 0e P PT T.. . œ
  E[ ] Var( ) E[ ] ( )e P e P Pe e P Pe PT T T T T 2 T 2. . . .. . .œ œ œ 5
  E[ ] ( )e P Pe PT T 2 T 2.. . .œ 5
  E[ ] E[ ] (see below)e P e Pe Pee PeT T T T. .œ

  E[ ] 0. . .T TPe P œ
  E[ ] ( ). . . .T T 2 T 2Pee P Pœ 5
  E[ ] ( ). . . .T T 2 T 2Pe Pe Pœ 5
  E[ ] (see below).T TPee Pe œ

  E[ ] ( )E[ ] ( ) trace( )e Pe P P e Pe P PT T T T T 2. . . . . .œ œ 5
  E[ ] E[ ] (see below)e Pee P Pee PeT T T T. .œ
  E[ ] E[ ] (see below)e Pe Pe Pee PeT T T T. .œ
  E[ ] (see below)e Pee PeT T œ

Only two difficult expressions remain: E[ ] and E[ ].  For both we need the.T T T TPee Pe e Pee Pe
following algebra:

E[ ]     E[ a b c d P P  ]a Pbc PdT T

i j k l
i j k l ij klœ ! ! ! !

We're interested in all cases where the indices are the same:
 iiii (all same) n
 iiij (one differs) n(n-1) of each of (iiij, iiji, ijii, jiii)
 iijj (two pair) n(n-1) of each of (iijj, ijij, ijji)
 iijk (one pair) n(n-1)(n-2) of each of (iijk, ijik, ijki, jiik, jiki, jkii)
 ijkl (all different) n(n-1)(n-2)(n-3)

For E[ ]     E[ e e e P P  ] we have.T T

i j k l
i j k l ij klPee Pe œ ! ! ! ! .

 iiii    E[ e e e P P  ]  P! !
i i

i i i i ii ii i 3 ii
2. . #œ

 iiij    E[ e e e P P  ]     P P! !
i j i j

j i i i ji ii i 3 ji ii
Á Á

. . #œ
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Note that the other three cases are zero, for example,   E[ e e e P P  ] 0.  This extends to.i j i i ij ii œ
the other three possible combinations (two pair, one pair, all differ).  Adding these two pieces
produces
 E[ ]  P      P P    P  P.T T 2

i i j
i 3 i 3 ji ii 3 i ii jiii

i j
Pee Pe œ  œ! ! ! !. # . # # .

Á

which does not appear to simplify further.

For E[ ]     E[ e e e e P P  ] we havee Pee PeT T

i j k l
i j k l ij klœ ! ! ! !

 iiii    E[ e e e e P P  ] P! !
i i

i i i i ii ii 4 ii
2œ #

 iiij     E[ e e e e P P  ]  0 (all four cases: jiii, ijii, iiji, iiij)!
i j

j i i i ji ii
Á

œ

 iijj    E[ e e e e P P  ]  P P! !
i j i j

i i j j ii jj ii jj
4

Á Á

œ 5

 ijij     E[ e e e e P P  ]  P P! !
i j i j

i j i j ij ij ij ij
4

Á Á

œ 5

 ijji     E[ e e e e P P  ]  P P! !
i j i j

i j j i ij ji ij ji
4

Á Á

œ 5

and the other cases are all zero.  Gathering up the pieces produces the following:
  Var( ( ) ( ) ). .  œe P eT

          E[( ) ( )( ) ( )] E[( ) ( )]. . . . . .      e P e e P e e P eT T T 2

  ( ) 2( ) trace( ) 4 ( P ) 4   P  Pœ   . . . .T 2 T 2 2 T 2
3 i ii ji

i j
P P P5 5 . . # .! !

  (P P 2P ) P  ( tr( ))( tr( ))     5 # 5 54 2 2 T 2 T 2

i j
ii jj 4ij ii

i
! !
Á

. . . .P P P P

 4 ( ) 4   P  P  (P P 2P ) tr( ) Pœ     5 # . 5 5 #2 T 2 4 2 4 2 2
3 i ii ji ii jj 4

i j ii j
ij ii. .P P! ! ! !

Á

 4 ( ) 4   P  P  2 P ( )Pœ    5 # . 5 # 52 T 2 4 2 4 2
3 i ii ji 4

i j ii j
ij ii. .P ! ! ! !

Á

The last step employs
  tr( ) ( P ) P P P .P 2 2 2

i i
ii ii jjii

i j
œ œ ! ! !

Á

Corollary 4.10. P Let  be a symmetric and idempotent, and the components of the random
vector  iid with four moments existing, thene
  Var( )  2 P ( )Pe PeT 4 2 4 2

i j
ij ii

i
4œ  5 # 5! !

Á

Corollary 4.11. P  Let  be symmetric and  0, 3  (which hold if e  are iid# # 53 4 i
4œ œ

Normal( 0, )), then52

  Var( ) 4 ( ) 2 tr( )e Pe P PT 2 T 2 4 2œ 5 5. .
Proof: Here 0, 3  and starting with# # 53 4

4œ œ
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  Var( ) 4 ( ) 2 P (3 )Pe Pe PT 2 T 2 4 2 4 4 2

i j
ij ii

i
œ   5 5 5 5. . ! !

Á

and now use
  tr( )   P P P .P2 2 2 2

i j i
ij ii ij

i j
œ œ ! ! ! !

Á
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