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PREFACE

When I was a graduate student in the mid 1960’s I finally came to
understand the mathematical theory underlying analysis of variance and
regression after reading a draft of William Kruskal’s monograph on the
so-called coordinate-free, or geometric, approach to these subjects. Alas,
with Kruskal’s demise, this excellent treatise will never be published.

From time to time during the 1970’s, 80’s and early 90’s, I had the good
fortune of teaching the coordinate-free approach to linear models. While
doing so, I evolved my own set of lecture notes, presented here. With
regard to inspiration and content, my debt to Kruskal is clear. However,
my notes are intended for a one, rather than three, quarter course, and are
aimed at Statistics graduate students who are already fairly well versed in
linear algebra. I have also included some of the highlights of the optimality
theory for estimation and testing in linear models under the assumption of
normality, feeling that the elegant setting provided by the coordinate-free
approach is a natural one in which to place these jewels of mathematical
statistics. Out of deference to Kruskal, who was my colleague here at the
University of Chicago, I have not until now made my notes public. My hope
is that readers will find the presentation both instructive and enjoyable.

Various graduate students, in particular Neal Thomas and Nathaniel
Schenker have made many comments which have greatly improved these
notes. My thanks go to all of them, and also to David Van Dyke and
Peter Meyer for suggesting how easy/hard each of the some 200 exercises
are. Thanks are also due to Mitzi Nakatsuka for her help in converting the
notes to TEX, and to Persi Diaconis for his advice and encouragement.

Michael J. Wichura

University of Chicago
July 2005
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CHAPTER 1

INTRODUCTION

In this chapter we introduce and contrast the matricial and geometric for-
mulations of the so-called general linear model and describe the organiza-
tion of the rest of these notes.

1. Orientation

Recall the classical framework of the general linear model (GLM). One is
given an n-dimensional random vector Y n×1 = (Y1 . . . , Yn)T , perhaps mul-
tivariate normally distributed, with covariance matrix (Cov(Yi, Yj))n×n =
σ2In×n and mean vector µn×1 = E(Y ) = (EY1, . . . , EYn)T of the form

µ = Xβ,

where Xn×p is known and σ2 and β p×1 = (β1, . . . , βp)T are unknown; in
addition the βi’s may be subject to linear constraints Rβ = 0, where Rc×p

is known. X is called the design, or regression, matrix , and β is called the
parameter vector.

1.1 Example. In the classical two-sample problem, one has

XT =
(

1 1 . . . 1
0 0 . . . 0︸ ︷︷ ︸

n1 times

0 0 . . . 0
1 1 . . . 1︸ ︷︷ ︸

n2 times

)
and β =

(
µ1

µ2

)
,

i.e.,

E(Yi) =
{
µ1, if 1 ≤ i ≤ n1,
µ2, if n1 < i ≤ n1 + n2 = n

. •

1.2 Example. In simple linear regression, one has

XT =
(

1 1 . . . 1
x1 x2 . . . xn

)
and β =

(
a

b

)
,

i.e.,
E(Yi) = a+ bxi for i = 1, . . . , n. •
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Typical problems are the estimation of linear combinations of the βi’s,
testing that some such linear combinations are 0 (or some other prescribed
value), and estimation of σ2.

1.3 Example. In the two-sample problem, one is often interested in es-
timating the difference µ2 − µ1 or in testing the null hypothesis that
µ1 = µ2. •
1.4 Example. In simple linear regression, one seeks estimates of the in-
tercept a and slope b and may want to test, e.g., the hypothesis that b = 0,
or the hypothesis that b = 1. •

If you’ve had some prior statistical training, you may well have already
encountered the resolution of these problems. You may know, for exam-
ple, that provided X is of full rank and no linear constraints are imposed
on β, the best (minimum variance) linear unbiased estimator (BLUE) of∑

1≤i≤p ciβi is
∑

1≤i≤p ciβ̂i, where

(β̂1, . . . , β̂p)T = CXT Y , with C = A−1, A = XTX;

this is called the Gauss-Markov theorem.
In these notes we will be studying the GLM from a geometric point of

view, using linear algebra in place of matrix algebra. Although we will not
reach any conclusions that could not be obtained solely by matrix tech-
niques, the basic ideas will emerge more clearly. With the added intuitive
feeling and mathematical insight this provides, one will be better able to
understand old results and formulate and prove new ones.

From a geometric perspective, the GLM may be described as follows,
using some terms which will be defined in subsequent chapters. One is
given a random vector Y taking values in some given inner product space
(V, 〈·, ·〉). It is assumed that Y has a weakly spherical covariance operator
and that the mean µ of Y lies in a given manifold M of V ; for purposes
of testing it is further assumed that Y is normally distributed. One desires
to estimate µ (or linear functionals of µ) and to test hypotheses such as
µ ∈ M0, where M0 is a given submanifold of M . The Gauss-Markov
theorem says that the BLUE of the linear functional ψ(µ) is ψ(µ̂), where
µ̂ is the orthogonal projection of Y onto M . As we will see, this geometric
description of the problem encompasses the matricial formulation of the
GLM not only as it is set out above (take, e.g., V = Rn, 〈·, ·〉 = dot-product,
Y = Y , µ = µ, and M = the subspace of Rn spanned by the columns of
the design matrix X), but also in cases where X is of less than full rank
and/or linear constraints are imposed on the βi’s.

2. An illustrative example

To illustrate the differences between the matricial and geometric approach-
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es, let’s compare the ways in which one establishes the independence of

Ȳ = µ̂ =

∑
1≤i≤n Yi

n
and s2 = σ̂2 =

1
n− 1

∑
1≤i≤n

(Yi − Ȳ )2

in the one-sample problem

Y n×1 ∼ N(µe, σ2In×n) with e = (1, 1, . . . , 1)T . (2.1)

(The vector e is called the equiangular vector.)
The classical matrix proof, which uses some facts about multivariate

normal distributions, runs like this. Let Bn×n = (bij) be the matrix



1√
n

1√
n

1√
n

1√
n

· · · 1√
n

1√
n

1√
2

−1√
2

0 0 · · · 0 0

1√
6

1√
6

−2√
6

0 · · · 0 0

1√
12

1√
12

1√
12

−3√
12

· · · 0 0
...

...
...

... · · · ...
...

1√
n(n−1)

1√
n(n−1)

1√
n(n−1)

1√
n(n−1)

· · · 1√
n(n−1)

−(n−1)√
n(n−1)




.

Note that the rows (and columns) of B are orthonormal
(∑

1≤k≤n bikbjk =

δij ≡
{

1, if i = j

0, if i 6= j

)
and that the first row is 1√

n
eT . Set

Z = BY .

Then
Z ∼ N(ν,Σ)

with
ν = B(µe) = µBe = (

√
n µ, 0, . . . , 0)T

and
Σ = B(σ2I)BT = σ2BBT = σ2I;

that is, Z1, Z2, . . . , Zn are independent normal random variables, each with
variance σ2, E(Z1) =

√
n µ, and E(Zj) = 0 for 2 ≤ j ≤ n. Moreover

Z1 =
1√
n

∑
1≤i≤n

Yi =
√
n Ȳ , or Ȳ =

Z1√
n
,

while

(n− 1)s2 =
∑

1≤i≤n
(Yi − Ȳ )2 =

∑
1≤i≤n

Y 2
i − nȲ 2

=
∑

1≤i≤n
Y 2

i − Z2
1 =

∑
1≤i≤n

Z2
i − Z2

1 =
∑

2≤i≤n
Z2

i

(2.2)
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because
∑

1≤i≤n
Z2

i = ZTZ = Y TBT BY = Y T Y =
∑

1≤i≤n
Y 2

i .

This gives the independence of Ȳ and s2 and it’s an easy step to get the
marginal distributions: Ȳ ∼ N(µ, σ2/n) and (n− 1)s2/σ2 ∼ χ2

n−1.
What is the nature of the transformation Z = BY ? Let b1 = e/

√
n,

b2, . . . , bn denote the transposes of the rows of B. The coordinates of
Y =

∑
1≤j≤n Cjbj with respect to this new orthonormal basis for Rn are

given by
Ci = bT

i Y = Zi, i = 1, . . . , n.

The effect of the change of coordinates Y → Z is to split Y into its
components along, and orthogonal to, the equiangular vector e.

Now I’ll show you the geometric proof, which uses some properties of
(weakly) spherical normal random vectors taking values in an inner product
space (V, 〈·, ·〉), here (Rn, dot-product). The assumptions imply that Y is
spherical normally distributed about its mean E(Y ) and that E(Y ) lies
in the manifold M spanned by e. Let PM denote orthogonal projection
onto M , QM orthogonal projection onto the orthogonal complement M⊥

ofM . Basic distribution theory says that PMY andQMY are independent.
But

PMY =
〈e,Y 〉
〈e, e〉 e = Ȳ e (2.3)

and
QMY = Y − PMY = Y − Ȳ e = (Y1 − Ȳ , . . . , Yn − Ȳ )T ;

it follows that Ȳ and (n− 1)s2 =
∑

1≤i≤n(Yi − Ȳ )2 = ‖QMY ‖2 are inde-
pendent. Again it is an easy matter to get the marginal distributions.

To my way of thinking, granted the technical apparatus, the second
proof is clearer, being more to the point. The first proof does the same
things, but (to the uninitiated) in an obscure manner.

3. Overview

Chapter 2 covers fundamental concepts from linear algebra, such as the no-
tion of orthogonal projection. Basic distribution theory for random vectors
taking values in inner product spaces is developed in Chapter 3. The “ge-
ometric” version of the Gauss-Markov theorem is discussed in Chapter 4,
and optimal properties of Gauss-Markov estimation under the assumption
of normality are considered in Chapter 5. F -testing of null hypotheses and
the related issue of interval estimation are taken up in Chapter 6. Chap-
ters 7 and 8 deal with the analysis of covariance and missing observations
respectively.

From the perspective of mathematical statistics, there are some very
elegant results, and some notable surprises, connected with the optimality
theory for Gauss-Markov estimation / F -testing under the assumption of
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normality. In the sections that deal with these matters — in particular
Sections 5.4, 5.5, 6.3, 6.4, and 6.6 —the mathematics is somewhat harder
than elsewhere, corresponding to the greater depth of the theory.

These notes are aimed at students who have already had some exposure
to the matricial formulation of the GLM, perhaps through a methodology
course, and are interested in the underlying theory. Each of the following
chapters contains numerous exercises, along with a problem set which de-
velops some topic complementing the material in that chapter. Most of the
exercises are easy but, I hope, instructive. I typically devote a substantial
amount of class time to having students present solutions to the exercises.
Some exercises foreshadow what’s to come, by covering a special case of
material that will be presented in full generality later on. Moreover, the
assertions of some exercises are appealed to later on the text. If you are
working through the book on your own, you should at least read over each
exercise, even if you don’t work things out. Each exercise is assigned a
difficulty level using the syntax “Exercise [d ]”, where d is an integer in the
range 1 to 5 — the larger is d, the harder the exercise. The value of d de-
pends both on the intrinsic difficulty of the exercise and the length of time
needed to write up the solution. The problem sets are somewhat harder
than the exercises and require a sustained effort for their completion.

Chapters are organized into sections. Within each section of the cur-
rent chapter, enumerated items are numbered consecutively in the form
(section number .item number). References to items in a different chapter
take the expanded form (chapter number .section number .item number).
For example, (2.4) refers to the 4th numbered item (which may be an
example, exercise, theorem, formula, or whatever) in the 2nd section of
the current chapter, while (6.1.3) refers to the 3rd numbered item in the
1st section of the 6th chapter.

The end of: a proof is marked by a ; of an example, by a • ; of an
exercise, by a ¦ ; of a part of problem set, by a ◦ .

To help distinguish between the matricial and geometric points of view,
matrices, including row and column vectors, are written in italic boldface
type while linear transformations and elements of abstract vector spaces
are written simply in italic type. We speak, for example, of the design
matrix X, but of vectors v and w in an inner product space V .
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CHAPTER 2

TOPICS IN LINEAR ALGEBRA

In this chapter we discuss some topics from linear algebra which play a
central role in the geometrical analysis of the GLM. The notion of orthog-
onal projection in an inner product space is introduced in Section 2.1 and
studied in Section 2.2. A class of orthogonal decompositions that are use-
ful in the design of experiments is studied in Section 2.3. The spectral
representation of self-adjoint transformations is developed in Section 2.4.
Linear and bilinear functionals are discussed in Section 2.5. The chapter
closes with a problem set in Section 2.6, followed by an Appendix contain-
ing a brief review of the basic definitions and facts from linear algebra with
which we presume the reader is already familiar.

1. Orthogonal projections

Throughout these notes we operate in the context of a finite-dimensional
inner product space (V, 〈·, ·〉)—V is a finite-dimensional vector space and
〈·, ·〉:V × V → R an inner product:

(i) (positive definiteness) 〈x, x〉 ≥ 0 for all x ∈ V and 〈x, x〉 = 0 if and
only if x = 0,

(ii) (symmetry) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ,

(iii) (bilinearity) For all c1, c2 ∈ R and x1, x2, x, y1, y2, y ∈ V , one has

〈c1x1 + c2x2, y〉 = c1〈x1, y〉+ c2〈x2, y〉
〈x, c1y1 + c2y2〉 = c1〈x, y1〉+ c2〈x, y2〉.

The canonical example is V = Rn endowed with the dot-product:

〈x,y〉 = x · y =
∑

1≤i≤n
xiyi = xT y

for x = (x1, . . . , xn)T and y = (y1, . . . , yn)T . Unless specifically stated to
the contrary, we always view Rn as endowed with the dot-product.
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Two vectors x and y in V are said to be perpendicular, or orthogonal
(with respect to 〈·, ·〉), if

〈x, y〉 = 0;

one writes
x⊥ y.

The quantity
‖x‖ =

√
〈x, x〉

is called the length, or norm of x. The squared length of the sum of two
vectors is given by

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x+ y〉+ 〈y, x+ y〉
= ‖x‖2 + 2〈x, y〉+ ‖y‖2,

which reduces to the Pythagorean theorem

‖x+ y‖2 = ‖x‖2 + ‖y‖2 (1.1)

when x⊥ y.

1.2 Exercise [1]. Let v1 and v2 be two non-zero vectors in R2 and let θ be the
angle between them, measured counter-clockwise from v1 to v2. Show that

cos(θ) =
〈v1, v2〉
‖v1‖ ‖v2‖

and deduce that v1 ⊥ v2 if and only if θ = 90◦ or 270◦.
[Hint: Use the identity cos(θ2 − θ1) = cos(θ1) cos(θ2) + sin(θ1) sin(θ2).] ¦
1.3 Exercise [3]. Let x, y and z be the vectors in Rn given by

xi = 1, yi = i− n+1
2
, and zi = (i− n+1

2
)2 − n2−1

12
for 1 ≤ i ≤ n. (1.4)

Show that x, y, and z are mutually orthogonal and span the same subspace as do

(1, 1, . . . , 1)T , (1, 2, . . . , n)T , and (1, 4, . . . , n2)T . Exhibit x, y, and z explicitly

for n = 5. ¦
1.5 Exercise [1]. Let O:V → V be a linear transformation. Show that O
preserves lengths:

‖Ox‖ = ‖x‖ for all x ∈ V
if and only if it preserves inner products:

〈Ox,Oy〉 = 〈x, y〉 for all x, y ∈ V .

Such a transformation is said to be orthogonal.
[Hint: Observe

〈x, y〉 =
‖x+ y‖2 − ‖x‖2 − ‖y‖2

2
(1.6)

for x, y ∈ V .] ¦
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1.7 Exercise [2]. (1) Let v1 and v2 be elements of V . Show that v1 = v2 if and

only if 〈v1, w〉 = 〈v2, w〉 for each w ∈ V , or just for each w in some basis for V .

(2) Let T1 and T2 be two linear transformations of V . Show that T1 = T2 if and

only if 〈v, T1w〉 = 〈v, T2w〉 for each v and w in V , or just for each v and w in

some basis for V . ¦
As intimated in the introduction, the notion of orthogonal projection

onto subspaces of V plays a key role in the study of the GLM. We begin
our study of projections with the following seminal result.

1.8 Theorem. Suppose that M is a subspace of V and that x ∈ V . There
is exactly one vector m ∈ M such that the residual x − m is orthogonal
to M :

(x−m)⊥ y for all y ∈M, (1.9)

or, equivalently, such that m is closest to x:

‖x−m‖ = inf{ ‖x− y‖ : y ∈M }. (1.10)

The proof will be given shortly. The unique m ∈M such that (1.9) and
(1.10) hold is called the orthogonal projection of x onto M , written PMx,
and the mapping PM which sends x ∈ V to PMx is called orthogonal
projection onto M . In the context of Rn with x = (xi) and m = (mi),
(1.9) reads

∑
1≤i≤n

(xi −mi)yi = 0 for all y = (yi) ∈M,

while (1.10) is the least squares characterization of m:
∑

1≤i≤n
(xi −mi)2 = inf

{ ∑
1≤i≤n

(xi − yi)2 : y ∈M }
.

1.11 Exercise [1]. Let M be a subspace of V . (a) Show that

‖x− PMx‖2 = ‖x‖2 − ‖PMx‖2 (1.12)

for all x ∈ V . (b) Deduce that

‖PMx‖ ≤ ‖x‖ (1.13)

for all x ∈ V , with equality holding if and only if x ∈M . ¦
Proof of Theorem 1.8. (1.9) implies (1.10): Suppose m ∈ M satisfies
(1.9). Then for all y ∈M the Pythagorean theorem gives

‖x− y‖2 = ‖(x−m) + (m− y)‖2 = ‖x−m‖2 + ‖m− y‖2,
so m satisfies (1.10).
(1.10) implies (1.9): Suppose m ∈ M satisfies (1.10). Then for any 0 6=
y ∈M and any δ ∈ R,

‖x−m‖2 ≤ ‖x−m+ δy‖2 = ‖x−m‖2 + 2δ〈x−m, y〉+ δ2‖y‖2;
this relation forces 〈x−m, y〉 = 0.
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Uniqueness: If
m1 + y1 = x = m2 + y2

with mi ∈M and yi ⊥M for i = 1 and 2, then the vector

m1 −m2 = y2 − y1

lies in M and is perpendicular to M , and so is perpendicular to itself:

0 = 〈m1 −m2,m1 −m2〉 = ‖m1 −m2‖2,
whence m1 = m2 by the positive-definiteness of 〈·, ·〉.
Existence: We will show in a moment that M has a basis m1, . . . ,mk

consisting of mutually orthogonal vectors. For any such basis the generic
m =

∑
1≤j≤k cjmj in M satisfies

(x−m)⊥M

if and only if x−m is orthogonal to each mi, i.e., if and only if

〈mi, x〉 = 〈mi,
∑

1≤j≤k
cjmj〉 =

∑
1≤j≤k

〈mi,mj〉cj = 〈mi,mi〉ci
for 1 ≤ i ≤ k. It follows that we can take

PMx =
∑

1≤i≤k

〈mi, x〉
〈mi,mi〉 mi. (1.14)

To produce an orthogonal basis for M , let m∗
1, . . . ,m

∗
k be any basis

for M and inductively define new basis vectors m1, . . . ,mk by the recipe
m1 = m∗

1 and

mj = m∗
j − P[m∗

1 ,...,m∗
j−1]

m∗
j = m∗

j − P [m1,...,mj−1]m
∗
j

= m∗
j −

∑
1≤i≤j−1

〈m∗
j ,mi〉

〈mi,mi〉 mi (1.15)

for j = 2, . . . , k; here [m∗
1, . . . ,m

∗
j−1] denotes the span of m∗

1, . . . ,m
∗
j−1 and

[m1, . . . ,mj−1] denotes the (identical) span of m1, . . . ,mj−1 (see Subsec-
tion 2.6.1).

The recursive scheme for cranking out the mj ’s above is called Gram-
Schmidt orthogonalization. As a special case of (1.14) we have the following
simple, yet key, formula for projecting onto a one-dimensional space:

P[m]x =
〈x,m〉
〈m,m〉 m for m 6= 0. (1.16)

1.17 Example. In the context of Rn take m = e ≡ (1, . . . , 1)T . Formula
(1.16) then reads

P[eee]x =
〈x, e〉
〈e,e〉 e =

∑
i xi∑
i 1

e = x̄e = (x̄, . . . , x̄)T ;
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we used this result in the introduction (see (1.2.3)). Formula (1.12) reads
∑

i
(xi − x̄)2 = ‖x− x̄e‖2 = ‖x‖2 − ‖x̄e‖2 =

∑
i
x2

i − nx̄2;

this is just the computing formula for (n− 1)s2 used at (1.2.2). According
to (1.10), c = x̄ minimizes the sum of squares

∑
i(xi − c)2. •

1.18 Exercise [2]. Use the preceding techniques to compute PMy for y ∈ Rn

and M = [e, (x1, . . . , xn)T ], the manifold spanned by the columns of the design

matrix for simple linear regression. ¦
1.19 Exercise [3]. Show that the transposes of the rows of the matrix B of Sec-

tion 1.2 result from first applying the Gram-Schmidt orthogonalization scheme to

the vectors e, (1,−1, 0, . . . , 0)T , (0, 1,−1, 0, . . . , 0)T , . . . , (0, . . . , 0, 1,−1)T in Rn

and then normalizing to unit length. ¦
1.20 Exercise [2]. Suppose x, y ∈ V . Prove the Cauchy-Schwarz inequality :

|〈x, y〉| ≤ ‖x‖ ‖y‖, (1.21)

with equality if and only if x and y are linearly dependent. Deduce Minkowski’s
inequality :

‖x+ y‖ ≤ ‖x‖+ ‖y‖. (1.22)

[Hint: For (1.21), take m = y in (1.16) and use part (b) of Exercise 1.11.] ¦
1.23 Exercise [4]. Define d:V × V → R by d(x, y) = ‖y − x‖. Show that d is a

metric on V such that the set {x ∈ V : ‖x‖ = 1 } is compact. ¦
1.24 Exercise [3]. Show that for any two subspaces M and N of V ,

sup{ ‖PMx‖ : x ∈ N and ‖x‖ = 1 } ≤ 1, (1.25)

with equality holding if and only if M and N have a non-zero vector in common.

[Hint: A continuous real-valued function on a compact set attains its maximum.]¦
To close this section we generalize (1.14) to cover the case of an arbi-

trary basis for M . Suppose then that the basis vectors m1, . . . ,mk are not
necessarily orthogonal and let x ∈ V . As in the derivation of (1.14),

PMx =
∑

j
cjmj

is determined by the condition

mi ⊥ (x− PMx) for i = 1, . . . , k,

i.e., by the so-called normal equations
∑

1≤j≤k
〈mi,mj〉cj = 〈mi, x〉, i = 1, . . . , k. (1.26)

In matrix notation (1.26) reads

〈m,m〉c = 〈m,x〉



SECTION 1. ORTHOGONAL PROJECTIONS 11

so that
c = 〈m,m〉−1 〈m,x〉,

the k × k matrix 〈m,m〉 and the k × 1 column vectors 〈m,x〉 and c being
given by

(〈m,m〉)
ij

= 〈mi,mj〉,
(〈m,x〉)

i
= 〈mi, x〉, and (c)i = ci

for i, j = 1, . . . , k. If the mi’s are mutually orthogonal, 〈m,m〉 is diagonal
and (1.14) follows immediately.

1.27 Exercise [3]. Show that the matrix 〈m,m〉 above is in fact nonsingular, so

that the inverse 〈m,m〉−1 exists.

[Hint: Show that
∑

j
〈mi,mj〉cj = 0 for each i implies c1 = · · · = ck = 0.] ¦

1.28 Exercise [2]. Redo Exercise 1.18 using (1.26). Check that the two ways of

calculating PMy do in fact give the same result. ¦
1.29 Exercise [2]. Let M be the subspace of Rn spanned by the columns of

an n × k matrix X. Supposing these columns to be linearly independent, use

(1.26) to show that the matrix representing PM with respect to the usual coor-

dinate basis of Rn is X(XTX)−1XT . Exhibit this matrix explicitly in the case

X = e. ¦
1.30 Exercise [4]. Suppose X0, X1, . . . , Xk are square integrable random vari-
ables defined on a common probability space. Consider using X1, . . . , Xk to
predict X0. Show that among predictors of the form

X̂0 = c0 +
∑

1≤i≤k
ciXi,

the c’s being constants, the one minimizing the mean square error of prediction

E(X̂0 −X0)
2

is
X̂0 = µ0 +

∑
1≤i≤k

(
∑

1≤j≤k
σijσj0 )(Xi − µi),

where

µi = E(Xi), 0 ≤ i ≤ k,

σij = Cov(Xi, Xj), 0 ≤ i, j ≤ k,

and the k × k matrix (σij)1≤i,j≤k is the inverse of the matrix (σij)1≤i,j≤k, the

latter assumed to be nonsingular.

[Hint: This is just a matter of projecting X0 − µ0 onto the subspace spanned by

1, X1 − µ1, . . . , Xk − µk in the space L2 of square integrable random variables

on the given probability space, the inner product between two variables A and B

being E(AB).] ¦
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2. Properties of orthogonal projections

This section develops properties of orthogonal projections. The results will
prove to be useful in analyzing the GLM.

Let (V, 〈·, ·〉) be an inner product space, let M be a subspace of V , and
let

M⊥ = {x ∈ V : x⊥M } ≡ {x ∈ V : x⊥ y for all y ∈M } (2.1)

be the orthogonal complement of M . Note that M⊥ is a subspace of V . Let
PM and QM denote orthogonal projection onto M and M⊥ respectively
and let x ∈ V . By Theorem 1.8,

x = PMx+QMx

is the unique representation of x as the sum of an element of M and an
element of M⊥.

2.2 Exercise [2]. Let M and M1, . . . , Mk be subspaces of V . Show that

d(M⊥) = d(V )− d(M),

(M⊥)⊥ = M,

M1 ⊂M2 ⇐⇒M⊥
1 ⊃M⊥

2 ,

(
∑

1≤i≤k
Mi)⊥ =

⋂
1≤i≤k

M⊥
i ,

(
⋂

1≤i≤k
Mi)⊥ =

∑
1≤i≤k

M⊥
i . ¦

2A. Characterization of orthogonal projections

A linear transformation T :V → V is said to be idempotent if T 2 = T and
said to be self-adjoint if

〈Tx, y〉 = 〈x, Ty〉 (2.3)

for all x, y in V .

2.4 Proposition. (i) PM is an idempotent, self-adjoint, linear transfor-
mation with range M and null space M⊥.
(ii) Conversely, an idempotent, self-adjoint, linear transformation T map-
ping V into V is the orthogonal projection onto its range.

Proof. (i): Write P for PM and Q for QM . The properties of PM are
all immediate consequences of the orthogonality of M and M⊥ and the
uniqueness of the decompositions

x = Px+Qx (Px ∈M, Qx ∈M⊥)
y = Py +Qy (Py ∈M, Qy ∈M⊥),

to wit:
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(a) P is linear, since x+ y = Px+Qx+ Py +Qy implies P (x+ y) =
Px+ Py and cx = cPx+ cQx implies P (cx) = c(Px);

(b) P is idempotent, since Px = Px+ 0 implies P 2x = Px;
(c) P is self-adjoint, since 〈Px, y〉 = 〈Px, Py + Qy〉 = 〈Px, Py〉 =

〈Px+Qx,Py〉 = 〈x, Py〉 for all x, y ∈ V ;
(d) M is the range of P , since on the one hand x ∈ V implies Px ∈M

and on the other hand x ∈M implies x = Px;
(e) M⊥ is the null space of P , since x ∈M⊥ ⇐⇒ x = Qx⇐⇒ Px = 0.

(ii): For x ∈ V write
x = Tx+ (x− Tx).

Since Tx ∈ R(T ), we need only show x− Tx ∈ (
R(T )

)⊥. For this observe
that for all y ∈ V , one has 〈x−Tx, Ty〉 = 〈T (x−Tx), y〉 = 〈Tx−T 2x, y〉 =
〈Tx− Tx, y〉 = 0.

2.5 Exercise [2]. Given 0 6= m ∈M , show that the transformation

T : v → 〈v,m〉
〈m,m〉 m

has all the properties required to characterize it as orthogonal projection

onto [m]. ¦
2.6 Exercise [2]. Let M be a subspace of V . Show that the orthogonal linear

transformation T :V → V which reflects each x ∈ M through the origin and

leaves each x ∈M⊥ fixed is T = I − 2PM . ¦
2.7 Exercise [2]. Let T :V → V be self-adjoint. Show that

(R(T ))⊥ = N (T ) (2.8)

and deduce

R(T 2) = R(T ). (2.9)

[Hint: To get (2.9), first show N (T 2) ⊂ N (T ).] ¦

2B. Differences of orthogonal projections

If M and N are two subspaces of V with M ⊂ N , the subspace

N −M = {x ∈ N : x⊥M } = N ∩M⊥ (2.10)

is called the (relative) orthogonal complement of M in N .

2.11 Exercise [2]. Let M and N be subspaces of V with M ⊂ N . Show that if

the vectors v1, . . . , vk span N , then the vectors QMv1, . . . , QMvk span N −M .¦
For self-adjoint transformations S and T mapping V to V , the notation

S ≤ T (2.12)

means 〈x, Sx〉 ≤ 〈x, Tx〉 for all x ∈ V .
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2.13 Proposition. Let M and N be subspaces of V . The following are
equivalent:

(i) PN − PM is an orthogonal projection,

(ii) M ⊂ N ,

(iii) PM ≤ PN ,

(iv) ‖PNx‖2 ≥ ‖PMx‖2 for all x ∈ V ,

(v) PM = PMPN ,

and

(vi) PN − PM = PN−M .

Proof. (ii) implies (i) and (vi): Suppose M ⊂ N . We will show

PN = PM + PN−M

so that (i) and (vi) hold. PM +PN−M is a self-adjoint, linear transformation
which is idempotent

(
(PM + PN−M )2 = P 2

M + PMPN−M + PN−MPM +
P 2

N−M = PM + 0 + 0 + PN−M

)
; its range is contained in N , and yet

contains N because it contains both M and N −M . According to Propo-
sition 2.4, these properties characterize PM + PN−M as PN .

(i) implies (iii): Write P for PN − PM . For all x ∈ V one has

〈PNx, x〉 − 〈PMx, x〉 =
〈
(PN − PM )x, x

〉

= 〈Px, x〉 = 〈P 2x, x〉 = 〈Px, Px〉 = ‖Px‖2 ≥ 0.

(iii) implies (iv): For all x ∈ V , ‖PNx‖2 = 〈PNx, PNx〉 = 〈x, PNx〉 ≥
〈x, PMx〉 = ‖PMx‖2.
(iv) implies (v): For all x ∈ V ,

‖PMx‖2 = ‖PN (PMx)‖2 + ‖QN (PMx)‖2
≥ ‖PN (PMx)‖2 ≥ ‖PM (PMx)‖2 = ‖PMx‖2;

this implies QNPM = 0. Thus for all x, y ∈ V ,

〈y, PMQNx〉 = 〈PMy,QNx〉 = 〈QNPMy, x〉 = 0

so PMQN = 0 also. Now use

PM = PM (PN +QN ) = PMPN + PMQN

to conclude PM = PMPN .

(v) implies (ii): Since PM = PM (PN + QN ) = PMPN + PMQN , PM =
PMPN entails PMQN = 0 =⇒ N⊥ ⊂M⊥ =⇒M ⊂ N .

(vi) implies (i): Trivial.
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2.14 Exercise [3]. Let p and n1, . . . , np be given and let V ≡ { (xij)1≤j≤ni,1≤i≤p :
xij ∈R } be endowed with the dot-product

〈(xij), (yij)〉=
∑

1≤i≤p

∑
1≤j≤ni

xijyij .

Put

M = { (xij) ∈ V : for some β1, . . . , βp ∈R, xij = βi for all i, j }= [v1, . . . ,vp]

and

M0 = { (xij) ∈ V : for some β ∈R, xij = β for all i, j }= [
∑

1≤i≤p
vi],

where (vi)i′j′ = δii′ . Show that for each x ∈ V ,

(PMx)ij = x̄i ≡ 1

ni

∑
1≤j≤ni

xij ,

(PM0x)ij = x̄≡ 1

n

∑
i
nix̄i· =

1

n

∑
ij
xij

(2.15)

with n=
∑

i
ni ; deduce that

(PM−M0x)ij = x̄i− x̄ . (2.16)

[Hint: v1, . . . , vp is an orthogonal basis for M .] ¦
2.17 Exercise [1]. Let M and N be subspaces of an inner product space V . Put

L = M ∩N . Show that PM−LPN−L = PMPN − PL. ¦
2.18 Exercise [2]. Suppose L and M are subspaces of V . Put

K = PL(M) ≡ {PLm : m ∈M }.
Show that

PV−M − PL−K = P(V−M)−(L−K). (2.19)

Solve this exercise twice: (1) by arguing that L − K ⊂ M⊥ (in fact, L − K =

L∩M⊥); and (2) by arguing (independently of (1)) that ‖QMx‖ ≥ ‖PL−Kx‖ for

each x ∈ V . ¦
2.20 Exercise [1]. Suppose x1, . . . , x` is a basis for a subspace N of V . Let
M = [x1, . . . , xk] be the subspace spanned by the first k of the xi’s, where
1 ≤ k < `. For an element v of V write

PMv =
∑k

i=1
aixi and PNv =

∑`

j=1
bjxj , (2.21)

and for j = k + 1, . . . , `, write

PMxj =
∑k

i=1
ci,jxi; (2.22)

the coefficients ai, bj , and ci,j in these sums are of course unique. Show that for
i = 1, . . . , k,

ai = bi +
∑`

j=k+1
ci,jbj . (2.23) ¦
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2C. Sums of orthogonal projections

Subspaces M and N of V are said to be orthogonal (or perpendicular),
written M ⊥N , if m⊥ n for each m ∈M and n ∈ N .

2.24 Proposition. Let P1, P2, . . . , Pk be orthogonal projections onto
M1, M2, . . . , Mk respectively. Set P = P1 + P2 + · · ·+ Pk. The following
are equivalent:

(i) P is an orthogonal projection,

(ii) PiPj = 0 for all i 6= j,

(iii) the Mi’s are mutually orthogonal,

and

(iv) P is orthogonal projection onto
∑

iMi.

Proof. (i) implies (ii): For each x ∈ V , one has

‖x‖2 ≥ ‖Px‖2 = 〈Px, x〉 =
〈∑

i
Pix, x

〉
=

∑
i
〈Pix, x〉 =

∑
i
‖Pix‖2.

Taking x = Pjy gives

‖Pjy‖2 ≥ ‖Pjy‖2 +
∑

i 6=j
‖PiPjy‖2.

As y ∈ V is arbitrary, we get PiPj = 0 for i 6= j.

(ii) implies (iii): PiPj = 0 =⇒Mj ⊂M⊥
i =⇒Mi ⊥Mj .

(iii) implies (i), (iv): For any two orthogonal subspaces K and L of V ,
part (vi) of Proposition 2.13 gives PK+L = PK + PL. By induction

P =
∑

i
Pi = P∑

iMi
.

(iv) implies (i): Trivial.

The most important thing here is that (iii) implies (iv): given mutually
orthogonal subspaces M1, . . . ,Mk,

P∑
iMi

=
∑

i
PMi . (2.25)

Notice how this generalizes (1.14).

2.26 Exercise [3]. Let I and J be positive integers and let the space V of I × J
matrices (xij)1≤i≤I,1≤j≤J be endowed with the dot-product

〈(xij), (yij)〉 =
∑

i

∑
j
xijyij .

Let MR be the subspace of row-wise constant matrices (xij = xij′ , for all i, j, j′),
MC the subspace of column-wise constant matrices (xij = xi′j , for all i, i′, j),
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and MG the subspace of constant matrices (xij = xi′j′ , for all i, i′, j, j′). Show
that

(PMRx)ij = x̄i· =
1

J

∑
j
xij , (2.27R)

(PMCx)ij = x̄·j ≡ 1

I

∑
i
xij , (2.27C)

(PMGx)ij = x̄·· ≡ 1

IJ

∑
ij
xij (2.27G)

for each x ∈ V . Show further that

MG + (MR −MG) + (MC −MG)

is an orthogonal decomposition of

M = MR +MC ,

and deduce

(PMx)ij = x̄i· + x̄·j − x̄·· . (2.28)

[Hint: The I × J matrices r1, . . . , rI defined by (ri)i′j′ = δii′ are an orthogonal

basis for MR.] ¦

2D. Products of orthogonal projections

Two subspaces M and N of V are said to be book orthogonal , written
M ⊥B N , if (M − L)⊥ (N − L) with L = M ∩N . The imagery is that of
two consecutive pages of a book which has been opened in such a way that
the pages are at right angles to one another. Note that M ⊥B N if M ⊥N ,
or if M ⊂ N , or if M ⊃ N . In particular, V and the trivial subspace 0 are
each book orthogonal to every subspace of V .

2.29 Proposition. Let M and N be two subspaces of V . The following
are equivalent:

(i) PMPN is an orthogonal projection,

(ii) PM and PN commute,

(iii) M ⊥B N ,

and

(iv) PMPN = PL = PNPM with L = M ∩N .

Proof. (iv) implies (i): Trivial.

(i) implies (ii): Given that PMPN is an orthogonal projection, one has

〈PMPNx, y〉 = 〈x, PMPNy〉 = 〈PMx, PNy〉 = 〈PNPMx, y〉
for all x, y ∈ V , so PMPN = PNPM .
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(ii) implies (iv): Set P = PMPN . Using (ii), we have that P is linear, self-
adjoint, and idempotent (P 2 = PMPNPMPN = P 2

MP 2
N = PMPN = P );

moreover R(P ) = L, so P = PL by Proposition 2.4.

(iv) is equivalent to (iii): On the one hand, (iv) means PMPN−PL = 0 and
on the other hand, (iii) is equivalent to PM−LPN−L = 0 (use (ii) ⇐⇒ (iii)
in Proposition 2.24). That (iii) and (iv) are equivalent follows from the
identity PM−LPN−L = PMPN − PL of Exercise 2.17.

2.30 Exercise [1]. Show that the subspaces MR and MC of Exercise 2.26 are

book orthogonal. ¦
2.31 Exercise [1]. In V = R3, let x = (1, 0, 0)T , y = (0, 1, 0)T , and z =

(0, 0, 1)T . Put L = [x + y], M = [x,y], and N = [y, z]. Show that L ⊂ M and

M ⊥B N , but it is not the case that L⊥B N . ¦
2.32 Exercise [2]. Suppose that L1, . . . , Lk are mutually orthogonal subspaces
of V . Show that the subspaces

MJ =
∑

j∈J
Lj (2.33)

of V with J ⊂ {1, 2, . . . , k} are mutually book orthogonal. ¦
2.34 Exercise [2]. Show that if M and N are book orthogonal subspaces of V ,

then so are M and N⊥, and so are M⊥ and N⊥. ¦
2.35 Exercise [2]. Suppose that M1, . . . , Mk are mutually book orthogonal

subspaces of V . Show that
∏

1≤j≤k
PMj is orthogonal projection onto

⋂
1≤j≤k

Mj

and that
∏

1≤j≤k
QMj is orthogonal projection onto (

∑
1≤j≤k

Mj)⊥. ¦
2.36 Exercise [2]. Show that if M1, . . . , Mk are mutually book orthogonal

subspaces of V , then so are the subspaces of V of the form
⋂

j∈J
Mj , where

J ⊂ {1, 2, . . . , k}. ¦
2.37 Exercise [3]. Prove the following converse to Exercise 2.32: if M1, . . . , Mn

are mutually book orthogonal subspaces of V , then there exist mutually orthog-

onal subspaces L1, . . . , Lk of V such that each Mm can be written in the form

(2.33).

[Hint: Multiply the identity IV =
∏

1≤`≤n
(PM` +QM`) by PMm after expanding

out the product.] ¦
2.38 Exercise [4]. LetM andN be arbitrary subspaces of V and put L = M∩N .
Let the successive products PM , PNPM , PMPNPM , PNPMPNPM , . . . of PM

and PN in alternating order be denoted by T1, T2, T3, T4, . . . . Show that for
each x ∈ V ,

Tjx→ PLx as j →∞.

[Hint: First observe that Tj − PL is the j-fold product of PM−L and PN−L in

alternating order and then make use of Exercise 1.24.] ¦
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2E. An algebraic form of Cochran’s theorem

We begin with an elementary lemma:

2.39 Lemma. Suppose M , M1,M2, . . . ,Mk are subspaces of V with M =
M1 +M2 + · · ·+Mk. The following are equivalent:

(i) every vector x ∈M has a unique representation of the form

x =
∑k

i=1
xi

with xi ∈Mi for each i,

(ii) for 1 ≤ i < k, Mi and
∑

j>iMj are disjoint,

(iii) d(M) =
∑k

i=1 d(Mi) (“d” ≡ dimension).

Proof. (i) is equivalent to (ii): Each of (i) and (ii) is easily seen to be
equivalent to the following property:

∑k

i=1
zi = 0 with zi ∈Mi for each i implies zi = 0 for each i.

(ii) is equivalent to (iii): The identity

d(K + L) = d(K) + d(L)− d(K ∩ L),

holding for arbitrary subspaces K and L of V , gives

d
(
Mi +

(∑
j>i

Mj

))
= d(Mi) + d

(∑
j>i

Mj

)− d
(
Mi ∩

( ∑
j>i

Mj

))

for 1 ≤ i < k. Combining these relations, we find

d(M) = d
(∑k

j=1
Mj

)
=

∑k

j=1
d(Mj)−

∑k−1

i=1
d
(
Mi ∩

( ∑
j>i

Mj

))
.

So d(M) =
∑k

i=1 d(Mi) if and only if d
(
Mi∩(

∑
j>iMj)

)
= 0 for 1 ≤ i < k.

When the equivalent conditions of the lemma are met, one says that
M is the direct sum of the Mi’s, written M = ⊕k

i=1Mi. The sum M of
mutually orthogonal subspaces Mi is necessarily direct and in this situation
one says that the Mi’s form an orthogonal decomposition of M .

We are now ready for the following result, which forms the algebraic ba-
sis for Cochran’s theorem (see Section 3.9) on the distribution of quadratic
forms in normally distributed random variables. There is evidently consid-
erable overlap between the result here and Proposition 2.24. Note though
that here it is the sum of the operators involved that is assumed at the
outset to be an orthogonal projection, whereas in Proposition 2.24 it is the
individual summands that are postulated to be orthogonal projections.
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2.40 Proposition (Algebraic form of Cochran’s theorem). Let
T1, . . . , Tk be self-adjoint linear transformations of V into V and suppose
that

P =
∑

1≤i≤k
Ti

is an orthogonal projection. Put Mi = R(Ti), 1 ≤ i ≤ k, and M = R(P ).
The following are equivalent:

(i) each Ti is idempotent,

(ii) TiTj = 0 for i 6= j,

(iii)
∑k

i=1 d(Mi) = d(M),
and

(iv) M1, . . . ,Mk form an orthogonal decomposition of M .

Proof. We treat the case where P is the identity transformation I on V ,
leaving the general case to the reader as an exercise.

(i) implies (iv): Each Ti is an orthogonal projection by (i) and
∑

i Ti

an orthogonal projection by the umbrella assumption
∑

i Ti = I. Propo-
sition 2.24 says that

∑
i Ti is orthogonal projection onto the orthogonal

direct sum ⊕iMi. But
∑

i Ti = I is trivially orthogonal projection onto V .
Thus the Mi’s form an orthogonal decomposition of V .

(iv) implies (iii): Trivial.

(iii) implies (ii): For any x ∈ V ,

x = Ix =
∑

i
Tix

so V =
∑k

i=1Mi. Taking x = Tjy and using Lemma 2.39 with M = V , we
get

TiTjy = 0 for i = 1, . . . , j − 1, j + 1, . . . , k

(as well as Tjy = T 2
j y—but we don’t need this now). Since j and y are

arbitrary, TiTj = 0 for i 6= j.

(ii) implies (i): One has, using (ii),

Ti − T 2
i = Ti(I − Ti) = Ti

( ∑
j 6=i

Tj

)
=

∑
j 6=i

TiTj = 0

for all i.

2.41 Exercise [3]. Prove Proposition 2.40 for the general orthogonal projection

P .

[Hint: The case of general P can be reduced to the case P = I treated in

the preceding proof by introducing T0 = QM . Specifically, let conditions (i′),
. . . , (iv′) be defined like (i), . . . , (iv), but with the indices ranging from 0 to k

instead of from 1 to k, and with M replaced by V . The idea is to show that

condition (c′) is equivalent to condition (c), for c = i, . . . , iv. In arguing that (ii)

implies (ii′), make use of Exercise 2.7.] ¦
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2.42 Exercise [3]. In the context of Rn, suppose I = T1 + T2 with T1 being the
transformation having matrix

(tij) =




1/n 1/n . . . 1/n
1/n 1/n . . . 1/n
...

...
...

1/n 1/n . . . 1/n




with respect to the usual coordinate basis, so that

[T1((xj))]i =
∑

1≤j≤n
tijxj

for 1 ≤ i ≤ n. In regard to Proposition 2.40, show that T1 and T2 are self-adjoint

and that some one (and therefore all) of conditions (i)–(iv) is satisfied. ¦
2.43 Exercise [2]. In the context of R2, let T1 and T2 be the transformations
having matrices

[T1] =

(
0 1
1 0

)
and [T2] =

(
1 −1

−1 1

)

with respect to the usual coordinate basis. Show that even though T1 and T2 are

self-adjoint and sum to the identity, some one (and therefore each) of conditions

(i)–(iv) of Proposition 2.40 is not satisfied. ¦

3. Tjur’s theorem

Let V be an inner product space. A finite collection L of distinct subspaces
of V such that

(T1) L1, L2 ∈ L implies L1 and L2 are book orthogonal,

(T2) L1, L2 ∈ L implies L1 ∩ L2 ∈ L, and (3.1)

(T3) V ∈ L
is called a Tjur system (after the Danish statistician Tue Tjur). For ex-
ample, the subspaces V , M , and M0 of Exercise 2.14 constitute a Tjur
system, as do the subspaces V , MR, MC , and MG of Exercise 2.26. Since
intersections of mutually book orthogonal spaces are themselves mutually
book orthogonal (see Exercise 2.36), any finite collection of mutually book
orthogonal subspaces of V can be augmented to a Tjur system.

The elements of a Tjur system L are partially ordered by inclusion.
For L ∈ L we write K ≤ L to mean that K ∈ L and K is a subset of L,
and write K < L to mean that K ≤ L and K 6= L. This notation is
used in the following key theorem, which shows that the elements of L
can be represented neatly and simply in terms of an explicit orthogonal
decomposition of V .
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3.2 Theorem (Tjur’s theorem). Let L be a Tjur system of subspaces
of V . For each L ∈ L, put

L◦ = L−
∑

K<L
K. (3.3)

Then

(i) the subspaces L◦ for L ∈ L are mutually orthogonal,

(ii) V =
∑

L∈L L
◦,

(iii) for each L ∈ L, one has L =
∑

K≤LK
◦.

Moreover, the L◦’s are uniquely determined by these conditions.

Proof. (i) and (iii) imply (3.3): Suppose that {L∗ : L ∈ L} is a collection
of mutually orthogonal subspaces of V such that L =

∑
K≤LK

∗ for each
L ∈ L; we claim L∗ = L◦ for each L. For this note that L∗ +

( ∑
K<LK

∗)
is an orthogonal decomposition of L, so

L∗ = L− (∑
K<L

K∗) = L− ( ∑
K<L

K
)

= L◦.

(3.3) implies (i)–(iii): We first use induction to show that

L =
∑

K≤L
K◦ (3.4)

for each L ∈ L. Condition (T2) implies that L has a smallest element,
say L0; (3.4) holds for L0 because L◦0 = L0. Suppose now

K =
∑

J≤K
J◦ for all K ∈ L with K < L. (3.5)

Then

L = L◦ +
∑

K<L
K (by the definition (3.3) of L◦)

= L◦ +
∑

K<L

( ∑
J≤K

J◦
)

(by the induction hypothesis (3.5))

= L◦ +
∑

J<L
J◦ =

∑
K≤L

K◦,

so (3.4) holds for L. (iii) now follows from Exercise 3.7 below, and (ii)
holds because V ∈ L by (T3).

To complete the proof we show that (i) holds. Let L1, L2 ∈ L; we have
to show

L◦1 ⊥ L◦2. (3.6)

By (T2) L = L1 ∩ L2 ∈ L. There are three cases to consider: (1) L < L1

and L < L2; (2) L = L1; and (3) L = L2. In case (1), L◦1 ⊂ L1 − L and
L◦2 ⊂ L2−L, so (3.6) holds because L1 and L2 are book orthogonal by (T1).
In case (2) L1 < L2, so (3.6) holds because L◦1 ⊂ L1 and L◦2 ⊂ L2 − L1.
Case (3) is like case (2).
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3.7 Exercise (The principle of induction for a partially ordered set) [4]. Let I be
a finite set and let “≤” be a partial order on I:

i ≤ i for all i ∈ I, (3.81)

i ≤ j and j ≤ k implies i ≤ k, (3.82)

i ≤ j and j ≤ i implies i = j. (3.83)

For i, j ∈ I, write i < j to mean i ≤ j and i 6= j. Say that an element j of I is

minimal if there doesn’t exist an i ∈ I such that i < j. For each i ∈ I, let S(i)

be a statement involving i. Prove the principle of induction for I: if S(i) is valid

for each minimal element i and if for each non-minimal element j, S(j) is valid

whenever S(i) is valid for all i < j, then S(j) is valid for all j ∈ I.
[Hint: If i < j and j < k, then i, j, and k must be distinct elements of I.] ¦
3.9 Exercise [2]. Show that the subspace L◦ defined by (3.3) can be written as

L ∩ (
⋂

K<L
(L−K)).

[Hint: See Exercise 2.2.] ¦
3.10 Exercise [2]. Show by example that the conclusion (i) of Tjur’s theorem

would not follow if condition (T2) were dropped from (3.1). ¦
3.11 Exercise [1]. Use Tjur’s Theorem to solve Exercise 2.37. ¦

Tjur’s theorem states in part that
∑

L∈L L
◦ is an orthogonal decom-

position of V . In applications one needs to know how to project onto the
subspaces L◦, what dimensions these subspaces have, and how long the
components PL◦v of a vector v ∈ V are. This information is readily ob-
tained from corresponding information about the original spaces L ∈ L.
Indeed, conclusion (iii) in Tjur’s theorem implies that

PL =
∑

K≤L
PK◦ for L ∈ L. (3.12)

These equations can be solved recursively for the PL◦ ’s, working upwards
from the minimal element L0 of L to the maximal element V :

PL◦0 = PL0 ,

PL◦ = PL −
∑

K<L
PK◦ for L > L0.

(3.13)

Similarly, the dimensions of the L◦ spaces can be found by solving the
equations

d(L) =
∑

K≤L
d(K◦), L ∈ L, (3.14)

and for v ∈ V the squared lengths

`2L◦ ≡ `2L◦v = ‖PL◦v‖2 (3.15)

can be found from the corresponding squared lengths

`2L ≡ `2L(v) = ‖PLv‖2 (3.16)
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by solving the equations

`2L =
∑

K≤L
`2K◦ , L ∈ L. (3.17)

In specific situations the computations are facilitated by referring to a
structure diagram which displays the ordering of the elements of L. The
following example illustrates the method.

3.18 Example. Consider the Tjur system {V,MR,MC ,MG} of Exercise
2.26. For notational simplicity write R for MR, C for MC , and G for MG.
The structure diagram is

V

R C

G

....................................................

...........
...........
...........
...........
........

...........
...........

...........
...........

........

....................................................

A line between two elements of L indicates that the lower subspace is
included in the upper one. No line needs to be drawn for the inclusion
G ⊂ V , since that relation is readily inferred from the diagram as it stands.

Formulas for the projections PL were given in Exercise 2.26 (see (2.27)).
To calculate the PL◦ ’s from the PL’s using (3.13), begin by superscripting
each L in the structure diagram by PL. Then, working upwards from the
bottom of the diagram, subscript each L by PL◦ , calculated as the difference
between the corresponding superscript and the sum of all subscripts for
spaces K strictly below L (i.e., for all K such that K < L). For example,
the subscript on V is calculated as PV − (PR◦ + PC◦ + PG◦). The result is

V PV
PV −PR−PC+PG

RPR
PR−PG

CPC
PC−PG

GPG
PG

....................................................

...........
...........
...........
...........
........

...........
...........

...........
...........

........

....................................................

The method of super
b scripts can also be used to organize the computa-

tion of the d(L◦)’s and `2L◦ ’s. For example, since d(V ) = IJ , d(R) = I,
d(C) = J , and d(G) = 1, the annotated structure diagram for the calcula-
tion of the d(L◦)’s is

V IJ
IJ−I−J+1

RI
I−1 CJ

J−1

G1
1

.........................................

...........
...........
...........
........

...........
...........

...........
........

.........................................

•



SECTION 3. TJUR’S THEOREM 25

The analysis of variance table for a Tjur system L lists for each L ∈ L
the quantities L◦, d(L◦), and `2L◦ = ‖PL◦v‖2 appearing in the decomposi-
tions

V =
∑

L∈L
L◦, d(V ) =

∑
L∈L

d(L◦), ‖v‖2 =
∑

L∈L
`2L◦(v).

Following conventional statistical practice, rows for smaller L’s (used in
building simpler models) appear above rows for larger L’s (used in building
more complicated models). The analysis of variance table for the Tjur
system in the preceding Example is given in Table 3.19.

3.19 Table. Analysis of variance table for the Tjur system {V,R,C,G} of Exam-
ple 3.18. The quantities `2L = ‖PLv‖2 appearing in the “squared length” column
are given by

`2V =
∑

ij
v2

ij , `2R = J
∑

i
v̄2

i·, `2C = I
∑

j
v̄2
·j , `2G = IJv̄2

·· .

Label Subspace Dimension Squared length

G G◦ = G 1 `2G = IJv̄2
··

R R◦ = R−G I − 1 `2R − `2G = J
∑

i
(v̄i· − v̄··)2

C C◦ = C −G J − 1 `2C − `2G = I
∑

j
(v̄·j − v̄··)2

V V ◦ = V − (R+ C +G) IJ − I − J + 1
`2V − `2R − `2C + `2G

=
∑

ij
(vij − v̄i· − v̄·j + v̄··)2

Sum V IJ `2V =
∑

ij
v2

ij

3.20 Exercise [2]. Verify the entries in the “squared lengths” column of Table

3.19. To get the expressions to the left of the “=” signs, use the method of

super
b scripts. To get the expressions to the right of the “=” signs, use the formulae

for the PL◦ ’s derived in Example 3.18. ¦
3.21 Exercise [2]. Draw the structure diagram for the Tjur system {V,M,M0}
of Exercise 2.14, and use the method of super

b scripts to construct the correspond-

ing analysis of variance table. ¦
3.22 Exercise (The Möbius inversion formula) [4]. As in Exercise 3.7, let “≤”
be a partial order on a finite set I. (1) The Möbius function of (I,≤) is the
matrix µ = (µik)i∈I,k∈I such that µik = 0 for i 6≤ k and such that

∑
j : i≤j≤k

µij = δik for i ≤ k (3.23)

or, equivalently, ∑
j : i≤j≤k

µjk = δik for i ≤ k. (3.24)
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Prove that such a matrix µ exists, and is inverse to the matrix ζ = (ζik)i∈I,k∈I

with

ζik =

{
1, if i ≤ k,

0, otherwise;

ζ is called the zeta function of (I,≤). (2) Prove of functions f and g mapping I
into some vector space W that

g(j) =
∑

i≤j
f(i) for all j ∈ I (3.25)

if and only if

f(j) =
∑

i≤j
g(i)µij for j ∈ I; (3.26)

this result is called the Möbius inversion formula.

[Hint: For each fixed i ∈ I, equation (3.23) can be solved recursively for µik with

i ≤ k.] ¦
3.27 Exercise [3]. Recall that the elements of a Tjur system L of subspaces
of V are partially ordered by inclusion (“≤”). Let µ be the Möbius function for
(L,≤). Use the Möbius inversion formula from the preceding exercise to show
that

PL◦ =
∑

PKµKL, d(L◦) =
∑

d(K)µKL, `2L◦ =
∑

`2KµKL (3.28)

for all L ∈ L, the summations in each case extending over K ≤ L, or even over

all K ∈ L. Check (3.28) against the entries in Table 3.19. ¦
As Example 3.18 suggests, Tjur systems arise naturally in the theory of

the design of experiments. The rest of this section elaborates on this idea.
In particular, we will see how the notions of book orthogonality, intersec-
tion, and inclusion of subspaces correspond to certain simple relationships
among the levels of the treatments assigned to the experimental units.

The design of an experiment often calls for the available experimental
units (e.g., plots of land) to be divided into groups, with each unit in a
group receiving the same level of some experimental treatment (e.g., type
of seed). To abstract this idea, let X be a finite set whose elements are
called experimental units. A (treatment) factor F is a partition of X into
nonempty disjoint subsets called blocks, or levels of F . The factor U whose
blocks are single units is called the units factor , while the factor T having
only one block is called the trivial factor .

For a subset f of X put

|f | = cardinality(f), (3.29)

the number of experimental units in f . A factor F is said to be balanced if
each of its levels is assigned the same number of units, i.e., if

|f | = |g| for all blocks f and g of F . (3.30)
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For example, if X = { (i, j) : 1 ≤ i ≤ I, 1 ≤ j ≤ J }, then the row factor R
with blocks ri = { (i, j) : 1 ≤ j ≤ J } for 1 ≤ i ≤ I is balanced because
|ri| = J for each i.

If F is a factor and x and y are experimental units, the notation

x ∼F y (3.31)

means that x and y are assigned the same level of F , i.e., belong to the
same block of F . The relation “∼F ” is an equivalence relation:

x ∼F x for each x ∈ X, (3.321)
x ∼F y implies y ∼F x, (3.322)

x ∼F y and y ∼F z implies x ∼F z. (3.323)

Conversely, if “∼” is an arbitrary equivalence relation on X, then its equiv-
alence classes constitute a factor. The correspondence between factors and
equivalence relations is one-to-one.

Let F and G be factors. One says F is nested in G if each block of G
is a union of blocks of F , or, equivalently, if

for x, y ∈ X, x ∼F y implies x ∼G y; (3.33)

this situation is written as
G ≤ F (3.34)

because it implies that F has at least as many levels as G. The units factor
U is nested in each factor, and each factor is nested in the trivial factor T .
The relation “≤” is a partial order on the set of factors of X:

F ≤ F for all factors F, (3.351)
H ≤ G and G ≤ F implies H ≤ F, (3.352)
G ≤ F and F ≤ G implies F = G. (3.353)

Interesting factors can be built up from given ones by means of their
equivalence relations. For example, suppose F and G are factors. Write

x ∼× y (3.36)

for x, y ∈ X to mean x ∼F y and x ∼G y. “∼×” is an equivalence relation;
the factor F ×G whose blocks are the ∼×-equivalence classes is called the
cross-classification induced by F and G. It turns out that F × G is the
least upper bound of F and G with respect to the “nested in” ordering, so
F ×G is also called the maximum of F and G and written as F ∨G.

3.37 Exercise [2]. Let F and G be factors. Show that F ×G is indeed the least
upper bound of F and G with respect to the ordering (3.34):

F ≤ F ×G and G ≤ F ×G, (3.381)

F ≤ H and G ≤ H implies F ×G ≤ H. (3.382) ¦



28 CHAPTER 2. TOPICS IN LINEAR ALGEBRA

Let again F and G be factors. Write

x ∼∧ y (3.39)

for x, y ∈ X to mean that there exists a finite sequence z0, . . . , zk of
experimental units such that

z0 = x and zk = y (3.401)
and

zj−1 ∼F zj and/or zj−1 ∼G zj for 1 ≤ j ≤ k. (3.402)

Loosely speaking, x ∼∧ y if it is possible to move from x to y through X
in a finite number of steps, each of which takes place within a block of F
(an F -step) or a block of G (a G-step); an efficient move would alternate
F -steps with G-steps, but this is not required. “∼∧” is an equivalence
relation; the factor whose blocks are the ∼∧-equivalence classes turns out
to be the greatest lower bound of F and G, and so is called the minimum
of F and G and written as F ∧G.

3.41 Exercise [3]. Let F and G be factors. Verify that the relation “∼∧” is
indeed an equivalence relation and that the factor F ∧ G is the greatest lower
bound of F and G:

F ∧G ≤ F and F ∧G ≤ G, (3.421)

H ≤ F and H ≤ G implies H ≤ F ∧G. (3.422) ¦
3.43 Example. Suppose X = {1, 2, 3, 4, 5, 6, 7, 8, 9} and the experimental
units are allocated to the 3 levels r1, r2, and r3 of a row factor R and the
3 levels c1, c2, and c3 of a column factor C as indicated below:

Columns

Rows c1 c2 c3

r1 1,2 3

r2 4,5 6 9

r3 7,8

For example, units 1, 2, and 3 are assigned to level r1 of R, and units 3
and 6 are assigned to level c2 of C. The blocks of R × C are {1, 2}, {3},
{4, 5}, {6}, {7, 8}, and {9}. R ∧ C is the trivial factor because each unit
can be reached from each other unit by a succession of row and column
steps. If the last experimental unit 9 were to be removed from X, then
R ∧ C would have 2 blocks, {1, 2, 3, 4, 5, 6} and {7, 8}. •
3.44 Exercise [4]. Let F1, . . . , Fk be factors such that f1 ∩ · · · ∩ fk 6= ∅ for all
f1 ∈ F1, . . . , fk ∈ Fk. For subsets J of K ≡ {1, . . . , k}, let

FJ =
∏

j∈J
Fj (3.45)
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denote the cross-classification induced by factors Fj with j ∈ J — x ∼FJ y if
and only if x ∼Fj y for all j ∈ J . (Take F∅ to be trivial factor T .) Show that

FJ1 ∧ FJ2 = FJ1∩J2 (3.46)

for all subsets J1 and J2 of K.

[Hint First do the case where k = 3, J1 = {1, 2}, and J2 = {2, 3}.] ¦
Let now V be the vector space of real-valued functions on X. For each

subset f of X, let If ∈ V be the indicator function of f :

If (x) =
{

1, if x ∈ f ,
0, if x /∈ f .

(3.47)

For each factor F , let

LF = [ If : f ∈ F ] = { v ∈ V : x ∼F y implies v(x) = v(y) } (3.48)

be the subspace of V consisting of functions that are constant on each block
of F . Note that LF has dimension

d(LF ) = |F |, the number of blocks of F. (3.49)

3.50 Proposition. Let F and G be factors. Then

G ≤ F if and only if LG ⊂ LF (3.51)
and

LF∧G = LF ∩ LG. (3.52)

Proof. G ≤ F implies LG ⊂ LF : G ≤ F means that each block of G
is a union of blocks of F , so constancy on blocks of G trivially implies
constancy on blocks of F .
LG ⊂ LF implies G ≤ F : Suppose LG ⊂ LF . Let g be a block of G and
f a block of F such that f ∩ g 6= ∅; we have to show that f ⊂ g. For this,
note that the function Ig ∈ LG ⊂ LF has the value 1 at some point of f
and so is identically 1 on f .
LF∧G ⊂ LF ∩ LG: This follows from (3.51) applied to F ∧ G ≤ F and
F ∧G ≤ G.
LF ∩LG ⊂ LF∧G: Suppose v ∈ V is constant over blocks of both F and G;
we have to show v is constant over blocks of F ∧ G. For this suppose
x, y ∈ X with x ∼F∧G y. Choose z0, . . . , zk satisfying (3.40). Then
v(zj−1) = v(zj) for each j, so v(x) = v(z0) = v(zk) = v(y).

Let now V be endowed with the dot-product

〈u, v〉 =
∑

x∈X
u(x)v(x). (3.53)

Let PF denote orthogonal projection onto LF . Since the functions If for
f ∈ F are an orthogonal basis for LF , we have

PF v =
∑

f∈F
v̄fIf (3.54)
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where

v̄f =
〈If , v〉
〈If , If 〉 =

1
|f |

∑
x∈F

v(x); (3.55)

in other words, the value of PF v at an experimental unit y is the average
value of v ∈ V over all units x that are in the same block of F as y. In situ-
ations where the symbol v is adorned with subscripts and/or superscripts,
we will sometimes write Af (v) in place of v̄f . Note that

`2LF
(v) ≡ ‖PF v‖2 =

∑
x∈X

(
(PF v)(x)

)2 =
∑

f∈F
|f | v̄2

f ≡ SSF , (3.56)

the symbol “SS” denoting sum of squares.
Factors F and G are said be orthogonal if LF and LG are book orthog-

onal. By Proposition 2.29, this is equivalent to PFPG = PGPF , and also
to PFPG = PLF∩LG

. In view of (3.52), this last condition is the same as
PFPG = PF∧G. The following proposition gives a useful characterization
of orthogonality in terms of the sizes of the blocks of F , G, and F ∧G. If
f and h are subsets of X, say that f is nested in h is f is a subset of h.

3.57 Proposition. Factors F and G are orthogonal if and only if

|f ∩ g|
|h| =

|f |
|h| ×

|g|
|h| (3.58)

for all blocks f ∈ F , g ∈ G, and h ∈ H ≡ F ∧ G such that f and g are
nested in h.

Proof. The functions δx = I{x}, x ∈ X, form a basis for V , so F and G
are orthogonal if and only if 〈δx, PHδy〉 = 〈δx, PFPGδy〉, and hence if and
only if

〈δx, PHδy〉 ≡ 〈PF δx, PGδy〉 (3.59)

for all x, y ∈ X. The left- and right-hand sides of (3.59) are 0 unless x
and y both belong to the same block h of H, in which case the left-hand
side is 〈

δx,
∑

h̃∈H
Ah̃(δy)Ih̃

〉
= Ah(δy) = 1/|h|

and the right-hand is

〈∑
f̃∈F

Af̃ (δx)If̃ ,
∑

g̃∈G
Ag̃(δy)Ig̃

〉
= Af (δx)Ag(δy)〈If , Ig〉 =

|f ∩ g|
|f | |g| ,

where f is the block of F containing x and g is the block of G containing y;
necessarily f ⊂ h and g ⊂ h.

3.60 Exercise [2]. Show of factors F and G that G ≤ F implies that F and G are

orthogonal. Solve this exercise twice, once using (3.51) and once using (3.58). ¦
The following exercise gives a convenient reformulation of the orthog-

onality criterion (3.58).
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3.61 Exercise [3]. Let F and G be factors. Show that F and G are orthogonal
if and only if

for each level h of H ≡ F ∧G and levels g1 and g2 of G nested in h,
there exists a constant c = c(h, g1, g2) such that |f ∩ g1| = c|f ∩ g2|
for all levels f of F nested in h,

(3.62)

this being the so-called condition of proportional cell counts . ¦
3.63 Exercise [2]. Each of the four tables below gives the number of experimen-
tal units to be allocated to the cells of a 3× 3 rectangular array. In which cases
is the implied row factor R orthogonal to the implied column factor C?

Table 1 Table 2 Table 3 Table 4

1 1 1 3 3 3 2 1 0 2 1 0

1 1 1 2 2 2 2 1 1 2 1 0

1 1 1 1 1 1 0 0 2 0 0 2 ¦

3.64 Exercise [2]. Consider a 2× 2× 2 design having a row factor R with levels
r1 and r2, a column factor C with levels c1 and c2, and a height factor H with
levels h1 and h2. Suppose the 10 experimental units are allocated in such a way
that

|ri ∩ cj ∩ hk| =
{

2, if (i, j, k) = (1, 1, 2) or (2,2,2),

1, otherwise.

Show that R⊥H and C ⊥H, but (R× C) ⊥/ H. Is (R ∧ C)⊥H? ¦
A Tjur design D is a collection of distinct factors such that

(D1) F,G ∈ D implies F and G are orthogonal,

(D2) F,G ∈ D implies F ∧G ∈ D, and (3.65)

(D3) the units factor U is in D.

The subspaces LF for F in a Tjur design D constitute a Tjur system L;
indeed, (D1) trivially implies (T1), (D2) implies (T2) by (3.52), and (D3)
implies (T3) since LU = V . Moreover by (3.51) the ordering of the factors
F ∈ D corresponds to the ordering of the LF ’s. The quantities PLF ≡ PF ,
d(LF ), and SSF = ‖PF v‖2 are easily obtained from (3.54), (3.49), and
(3.56) respectively, and the analysis of variance table can be written down
more or less at sight using a factor structure diagram and the method of
super

b scripts.

3.66 Exercise (A split-plot design) [4]. Suppose that 5 treatments a1, . . . , a5

are applied to 15 plots, each treatment being applied to 3 plots. Each plot is
subdivided into 2 subplots to which two further treatments b1, b2 are applied,
one treatment to each subplot. The relevant factors are: the units factor U
(for subplots) with 30 levels; a “plot” factor P with 15 levels, an “a-treatment”
factor A with 5 levels, a “b-treatment” factor B with 2 levels, a “combined
treatment” factor A × B with 10 levels, and the trivial factor T with 1 level.
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Using the following template of •’s to represent the 30 subplots, show one way
of assigning the experimental units to these factors:

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

Verify that {U,P,A,B,A×B, T} is a Tjur design with factor structure diagram

U

P A×B

A B

T

....................................................

....................................................

.....................................

.....................................
................

................
................

................
................

................
................

...........
...........

...........
...........

........

...........
...........
...........
...........
........

and use the method of super
b scripts to compute the corresponding analysis of

variance table. ¦

4. Self-adjoint transformations and the spectral theorem

Recall that a linear transformation T :V → V such that

〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ V (4.1)

is said to be self-adjoint. In this section we are going to study the geometry
of self-adjoint transformations.

A few words are in order about one reason why self-adjoint transforma-
tions are of special interest in the study of the GLM. Consider the canonical
example: (V, 〈·, ·〉) = (Rn,dot product). Suppose Y n×1 = (Yi)1≤i≤n is a
random vector in Rn with dispersion matrix Σn×n = (σij)1≤i≤n,1≤j≤n:

σij = Cov(Yi, Yj).

The covariance between any two linear combinations
∑

i ciYi = cT Y and∑
j djYj = dT Y of the Y ’s is given by

Cov(cT Y ,dT Y ) =
∑

ij
ciσijdj = cT Σd.

The probabilistic identity

Cov(cT Y ,dT Y ) = Cov(dT Y , cT Y )

implies the algebraic identity

〈 c,Σd 〉 = cT Σd = dT Σc = 〈Σc,d 〉.
This says that the linear transformation

TΣ: x → Σx
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is self-adjoint. Notice also that

〈TΣx,x〉 = 〈Σx,x〉 = xT Σx = Var(xT Y ).

Thus variance/covariance structures are intimately related to self-adjoint
transformations.

4.2 Exercise [2]. Let T :V → V be a linear transformation and let A = (aik)
be the matrix of T with respect to a given orthonormal basis b1, . . . , bn for V , so
that

Tbk =
∑

i
aikbi for 1 ≤ k ≤ n.

Show that
ajk = 〈bj , T bk〉

for all j, k and conclude that T is self-adjoint if and only if A is symmetric. ¦
We have seen that any orthogonal projection is self-adjoint. And, of

course, the action of an orthogonal projection is geometrically obvious:
PM leaves each x ∈ M fixed, kills each y ∈ M⊥, and maps the general
V vector z = x + y with x ∈ M and y ∈ M⊥ into PMz = PMx + PMy.
More generally if

V = M1 + · · ·+Mk

is a decomposition of V into mutually orthogonal subspaces and if
λ1, . . . , λk are any scalars, then

T =
∑

1≤i≤k
λiPMi (4.3)

is self-adjoint, being a linear combination of self-adjoint transformations.
Again the action of such a T is geometrically clear: since

T
( ∑

1≤i≤k
xi

)
=

∑
1≤i≤k

λixi for xi ∈Mi, 1 ≤ i ≤ k,

T just dilates (or contracts) by a factor of λi within Mi, 1 ≤ i ≤ k.
The remarkable thing is that (4.3) describes the most general self-adjoint
transformation on V :

4.4 Theorem (Spectral theorem). Suppose T :V → V is linear and
self-adjoint. Then there exists an orthogonal decomposition V = ⊕k

i=1Mi

of V into non-trivial subspaces Mi and distinct scalars λi such that

T =
∑

1≤i≤k
λiPMi . (4.5)

Suppose T is self-adjoint and therefore of the form (4.5). One can
characterize the λi’s and Mi’s in terms of the eigenvalues and eigenvectors
of T . Recall that for any linear transformation S:V → V , λ is called an
eigenvalue of S if there is a non-zero eigenvector x ∈ V such that

Sx = λx; (4.6)
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the subspace of all x ∈ V such that (4.6) holds is called the eigenmanifold
of λ, denoted Eλ. From what was said earlier about the geometric action
of T it is clear that the λi’s are precisely the distinct eigenvalues of T and
the Mi’s are the corresponding eigenspaces. Also for any x ∈ V ,

QT (x) ≡ 〈
Tx, x

〉
=

〈∑
i
λixi,

∑
j
xj

〉
=

∑
i
λi‖xi‖2, (4.7)

where xi = PMix for 1 ≤ i ≤ k. (The Q in QT stands for “quadratic
form”.) For x of unit length, i.e., for

1 = ‖x‖2 =
∑

i
‖xi‖2,

QT (x) is thus a weighted average of the λi’s. This observation leads to the
following extremal characterization of the λi’s. Assuming the λi’s to be
indexed in decreasing order, so that λ1 > λ2 > · · · > λk, one has

λ1 = sup{QT (x) : ‖x‖ = 1 }
λ2 = sup{QT (x) : ‖x‖ = 1, x⊥ Eλ1 }
...

...
λk = sup{QT (x) : ‖x‖ = 1, x⊥ (Eλ1 + · · ·+ Eλk−1) }.

(4.8)

Proof of the Spectral theorem. Let T be self-adjoint and linear. We
are going to produce the representation (4.5) using (4.8) to define the λi’s.
To begin with, consider

λ1 ≡ sup{QT (x) : x ∈ B }
where

B = {x ∈ V : ‖x‖ = 1 }.
Since with respect to the distance function

d(x, y) = ‖y − x‖
the closed bounded set B is compact (see Exercise 1.23) and the mapping

x→ QT (x) = 〈Tx, x〉
is continuous, and since continuous functions on compact sets achieve their
suprema, there exists an x ∈ B such that

QT (x) = λ1.

We claim that such an x is an eigenvector of T with eigenvalue λ1, i.e.,

Tx = λ1x.

Notice that

λ1x = 〈Tx, x〉x =
〈Tx, x〉
〈x, x〉 x = P [x](Tx).

So if
Tx 6= λ1x
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then the residual vector

r = Tx− P [x](Tx)

is non-zero, and the idea is to produce a contradiction by perturbing x in
the direction r so as to produce a vector y ∈ B such that QT (y) > QT (x).
Specifically for real δ set

yδ =
x+ δr

‖x+ δr‖ ∈ B

and note that

QT (yδ) = 〈Tyδ, yδ〉

=
〈Tx+ δTr, x+ δr〉

‖x+ δr‖2

=
〈Tx, x〉+ δ

(〈Tr, x〉+ 〈Tx, r〉) + δ2〈Tr, r〉
‖x+ δr‖2

=
〈Tx, x〉+ 2δ〈Tx, r〉+ δ2〈Tr, r〉

‖x+ δr‖2 (T is self-adjoint)

=
〈Tx, x〉+ 2δ‖r‖2 + δ2〈Tr, r〉

‖x‖2 + δ2‖r‖2 (r = Q[x]Tx⊥ x).

Since ‖r‖ 6= 0 by supposition, QT (yδ) > 〈Tx, x〉/‖x‖2 = QT (x) for suffi-
ciently small positive δ.

This shows that λ1 is an eigenvalue of T . Let M1 be the associated
eigenspace. If M1 = V , then T = λ1PM1 and we are done. Otherwise note
that for x ∈M1 and y ∈M⊥

1 ,

〈x, Ty〉 = 〈Tx, y〉 = λ1〈x, y〉 = 0,

so T maps M⊥
1 into itself. Applying the preceding argument to the restric-

tion T1 of T to M⊥
1 we find that

λ2 = sup{QT1(x) ≡ QT (x) : x ∈ B and x⊥M1 }

is an eigenvalue of T1 (and therefore of T ) with some non-trivial eigenspace
M2 ⊂ M⊥

1 . If M2 = M⊥
1 we have T = λ1PM1 + λ2PM2 and are done.

Otherwise we recursively define λi and Mi for i = 3, . . . by

λi = sup{QT (x) : x ∈ B and x⊥ (M1 + · · ·+Mi−1) }
Mi = eigenspace of λi for T restricted to (M1 + · · ·+Mi−1)⊥,

stopping the process with the first index k such that
∑

1≤i≤k Mi is V ; such
a k exists because each new eigenspace adds at least one dimension to the
sum. We then have T =

∑
1≤i≤k λiPMi .
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4.9 Exercise [3]. Find the spectral representation (4.5) of the transformation
T :Rn → Rn corresponding to the matrix




a b b · · · b
b a b · · · b
b b a · · · b
...

...
... · · ·

...
b b b · · · a



. ¦

4.10 Exercise [2]. Use the Spectral Theorem to solve Exercise 2.7. ¦
4.11 Exercise [3]. Use the Spectral Theorem to show that if An×n is a symmet-

ric matrix, then there exists an orthogonal matrix On×n such that D ≡ OTAO
is diagonal. ¦
4.12 Exercise [3]. Suppose T :V → V is linear self-adjoint and positive semi-

definite (〈v, Tv〉 ≥ 0 for all v ∈ V ). Show that there exists a unique linear

self-adjoint positive semi-definite transformation S:V → V such that T = S2.

(S is called the (positive) square root of T ; one writes S =
√
T .) ¦

5. Representation of linear and bilinear functionals

For fixed v ∈ V , the mapping

x→ 〈x, v〉 (x ∈ V )

is a linear functional on V , i.e., a linear transformation from V to R. The
following result says every linear functional on V is of this form:

5.1 Proposition (Representation theorem for linear functionals).
If ψ is a linear functional on V , then there exists a unique v ∈ V such that

ψ(x) = 〈x, v〉 for all x ∈ V . (5.2)

The v of (5.2) is called the coefficient vector of ψ; one writes v =
c.v.(ψ), or just v = cv(ψ).

Proof of the Representation theorem. Uniqueness: If v and w are
both coefficient vectors for ψ, then their difference is orthogonal to every
vector in V and so is 0.

Existence: If the desired representation holds, then the null space of ψ is
the orthogonal complement of [v] in V . This observation suggests how to
proceed. To avoid trivialities, suppose ψ is not identically 0 and let N be
its null space. Since

d(N) = d(V )− d
(
R(ψ)

)
= d(V )− 1,

N⊥ is 1-dimensional and so of the form [w] for some 0 6= w ∈ V . The idea
is to exhibit the desired coefficient vector as a scalar multiple of w, say dw.
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Since the general vector

z = y + cw (y ∈ N, c ∈ R)

of V is mapped by ψ into

ψ(z) = ψ(y) + cψ(w) = cψ(w)

and by 〈·, dw〉 into

〈z, dw〉 = 〈y + cw, dw〉 = cd〈w,w〉,
the appropriate choice of d is

d =
ψ(w)
‖w‖2 .

There are two common ways to produce the coefficient vector v of a
given linear functional. One way is the direct-construction method which
constructs v as in the existence part of the proof. The other way is the
confirmation method which checks that a conjectured v satisfies (5.2) and
then appeals to uniqueness.

5.3 Exercise [3]. Suppose x1, x2, . . . , xn is a basis for V , so that each x ∈ V has
a unique representation of the form

x = x1β1 + x2β2 + · · ·+ xnβn.

Show that the coefficient vector of the so-called jth coordinate functional

ψj :x→ βj

is

vj ≡
(

Qjxj

‖Qjxj‖
)

1

‖Qjxj‖ (5.4)

where Qj = I − Pj , Pj being projection onto the manifold spanned by the xi’s

for i 6= j. Solve this exercise twice, once using the direct-construction method

and once using the confirmation method. ¦
Suppose now F :V ×V → R is a bilinear functional , i.e., linear in each

component, the other component being held fixed. For each z ∈ V , the
map

y → F (y, z)

is linear and so of the form

F (y, z) = 〈y, Cz〉
for a unique vector Cz ∈ V . Since

〈y, C(c1z1 + c2z2)〉 = F (y, c1z1 + c2z2) = c1F (y, z1) + c2F (y, z2)
= 〈y, c1Cz1 + c2Cz2〉

for all y ∈ V , the mapping C:V → V is linear. We have established:
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5.5 Proposition (Representation theorem for bilinear function-
als). If F :V × V → R is bilinear, then there exists a unique linear trans-
formation C:V → V such that

F (x, y) = 〈x,Cy〉 for all x and y ∈ V . (5.6)

This result has several important consequences. First, if T :V → V is
linear, then

F (x, y) ≡ 〈Tx, y〉
defines a bilinear functional on V which is necessarily of the form

〈Tx, y〉 = 〈x, T ′y〉

for some unique linear transformation T ′:V → V . T ′ is called the adjoint
of T . One has

(T ′)′ = T, (ST )′ = T ′S′, (5.7)

and T ′ = T if and only if T is self-adjoint in the sense of (4.1). Moreover,
T is orthogonal if and only if T ′ = T−1, because the identity

〈Tx, Ty〉 − 〈x, y〉 = 〈(T ′T − I)x, y〉

for x, y ∈ V implies that T preserves inner products if and only if T ′T = I.

5.8 Exercise [1]. Let T be a linear transformation from V to V , and let A =

(aij) be the matrix of T with respect to a given orthonormal basis for V . Show

that the matrix of T ′ is the transpose (aji) of A. ¦
5.9 Exercise [3]. Let T be a linear transformation from V to V . Show that

N (T ′) = (R(T ))⊥ and deduce that T ′ is nonsingular if and only if T is. ¦
5.10 Exercise [3]. Let M be a subspace of V and let O:V → V be an orthogonal

linear transformation. Show that OPMO′ is orthogonal projection onto O(M).¦
5.11 Exercise [3]. Locate at least two places where use of the relation (ST )′ =

T ′S′ would simplify the calculations in Section 2.2. ¦
Next suppose that F :V × V → R is both bilinear and symmetric.

The representing transformation C is then self-adjoint and one can find
an orthonormal basis for V consisting of eigenvectors b1, . . . , bn of C with
associated eigenvalues λ1, . . . , λn. F then takes the form

F (x, y) = 〈x,Cy〉 =
〈 ∑

i
cibi, C

∑
j
djbj

〉
=

∑
i
λicidi, (5.12)

where the ci = 〈x, bi〉’s and dj = 〈y, bj〉’s are the coefficients of x and y with
respect to the b-basis. Thus when viewed from the right perspective, the
general symmetric bilinear functional on V is just a weighted dot-product
(the weights can be zero or negative).
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5.13 Exercise [3]. A quadratic form Q on V is a functional of the form

Q(v) = 〈Cv, v〉

for some linear transformation C:V → V . Show that there is no loss of generality
in supposing that C is self-adjoint, in which case C is uniquely determined by Q.
[Hint: For uniqueness, generalize (1.6) to

〈Cv,w〉 =
Q(v + w)−Q(v)−Q(w)

2
.] (5.14) ¦

Finally, suppose F = [·, ·] is another inner product on V , so that F
is positive-definite in addition to being symmetric and bilinear. We then
have

[x, y] = 〈x,Cy〉 for all x and y in V (5.15)

for a unique self-adjoint linear transformation C on V which is positive
definite in the sense that

〈x,Cx〉 ≥ 0 for all x ∈ V and 〈x,Cx〉 = 0 only for x = 0.

In other words, with respect to an appropriate orthonormal basis b1, . . . , bn,
[·, ·] takes the form

[x, y] =
∑

i
λicidi, for ci = 〈x, bi〉, di = 〈y, bi〉 (5.16)

with the weights λ1, λ2, . . . , λn being strictly positive.

5.17 Exercise [4]. Suppose V and W are both inner product spaces. Formulate
and prove a representation theorem for bilinear functionals on V × W . Show
that if T :V → W is linear, then there exists a unique linear transformation
T ′:W → V such that

〈Tv,w〉W = 〈v, T ′w〉V for all v ∈ V and w ∈W ; (5.18)

T ′ is called the adjoint of T . Formulate and prove extensions of (5.7) and the

assertion of Exercise 5.8. ¦
5.19 Exercise [2]. Suppose M is a subspace of V . Up to now we have considered

PM as a linear transformation from V to V , and as such it is self-adjoint. One

can, however, think of PM as being a linear transformation from V to M . If one

takes this point of view, what then is the adjoint of PM? (The inner product of

two elements of M is defined to be their inner product in V .) ¦
5.20 Exercise [3]. Suppose V and W are both inner product spaces and that
T :V →W is linear. Show that

R(T ′) = R(T ′T ) and N (T ) = N (T ′T ). (5.21)

Deduce that T ′T is nonsingular if and only if T is. ¦
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5.22 Exercise [3]. Suppose B and V are both inner product spaces and that

T :B → V is linear. Put M = T (B) = {Tb : b ∈ B }. Show that M is a subspace

of V and that for each v ∈ V , one has PMv = Tb if and only if b ∈ B satisfies the

so-called normal equations T ′Tb = Tv. Do not assume that T is nonsingular. ¦
5.23 Exercise [3]. Suppose 〈·, ·〉 and [·, ·] are both inner products on V . Express

the unique [·, ·]-self-adjoint, positive definite linear transformation D such that

〈x, y〉 = [x,Dy] for all x, y ∈ V in terms of the C of equation (5.15). ¦

6. Problem set: Cleveland’s identity

Let (V, 〈·, ·〉) be an inner product space. Let 〈·, ·〉∗ = 〈·,∆·〉 be another inner
product on V : ∆ is a positive definite self-adjoint linear transformation
from V to V . For any subspace M of V , let PM denote projection onto M
with respect to 〈·, ·〉, and let P ∗M denote projection onto M with respect
to 〈·, ·〉∗. Denote the corresponding residual projections by QM and Q∗M
respectively. For any vector z in V , one has of course

‖Q∗Mz‖2 ≥ ‖QMz‖2.
The question of how much larger ‖Q∗Mz‖2 can be than ‖QMz‖2 is addressed
by Cleveland’s identity, which asserts

supM supz∈V,z 6∈M

‖Q∗Mz‖2
‖QMz‖2 =

(1 + τ)2

4τ
, (6.1)

where
τ =

λn

λ1
(6.2)

is the ratio of the largest eigenvalue λn of ∆ to the smallest eigenvalue λ1

of ∆. By the extremal characterization of the eigenvalues of ∆, one has

λ1 = infv∈V,v 6=0

(‖v‖∗
‖v‖

)2

and λn = supv∈V,v 6=0

(‖v‖∗
‖v‖

)2

. (6.3)

In this problem set you are asked to establish (6.1). Here are the steps
in the argument. To begin with, suppose M and z 6∈ M are given; one
needs to show

‖Q∗Mz‖2
‖QMz‖2 ≤

(1 + τ)2

4τ
. (6.4)

A. Show that without loss of generality, one can consider just the case
where z ⊥M (with respect to 〈·, ·〉) with ‖z‖ = 1 and where M is one-
dimensional, say M = [y] with ‖y‖ = 1.
[Hint: Given z and M such that PMz 6= P ∗Mz, find a one-dimensional
subspace L of M such that

‖Q∗Mz‖ = ‖Q∗Lu‖ and ‖QMz‖ = ‖QLu‖
for u = QMz.] ◦
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B. Let y and z be as in (A). Put W = [y, z]. Show that there exists a
basis for W , say {b1, b2}, orthonormal with respect to 〈·, ·〉, such that for
v, w ∈W

〈v, w〉∗ = β1v1w1 + β2v2w2

where vi = 〈v, bi〉, wi = 〈w, bi〉, and

β1 = infu∈W,u6=0

(‖u‖∗
‖u‖

)2

and β2 = supu∈W,u6=0

(‖u‖∗
‖u‖

)2

.

[Hint: Restrict 〈·, ·〉 and 〈·, ·〉∗ to W ×W .] ◦
C. Let y and z be as in (A), b1, b2, β1, β2 as in (B). Show that

‖Q∗Mz‖2
‖QMz‖2 =

β2
1y

2
1 + β2

2y
2
2

(β1y2
1 + β2y2

2)2
,

where yi = 〈y, bi〉.
[Hint: Compute! Note that the matrix

(
y1 z1
y2 z2

)
is orthogonal.] ◦

D. Show that

supp1,p2≥0; p1+p2=1

β2
1p1 + β2

2p2

(β1p1 + β2p2)2
=

(β1 + β2)2

4β1β2

and deduce (6.4). ◦
E. Show that equality holds in (6.1) by exhibiting M and z such that

‖Q∗Mz‖2
‖QMz‖2 =

(1 + τ)2

4τ
. ◦

7. Appendix: Rudiments

This appendix reviews basic definitions and facts about linear algebra with
which we presume the reader is acquainted.

7A. Vector spaces

A (real) vector space is a triple (V,+, ·) consisting of a set V of objects
called vectors and two operations, vector addition, “+”, which associates
to each pair v1, v2 of vectors in V a vector v1 + v2 in V , and scalar multi-
plication, “·”, which associates to each vector v ∈ V and each scalar c ∈ R
a vector c · v ≡ cv in V . The operations are assumed to have the following
properties:

(1) For all v1, v2, v3 ∈ V , (v1 + v2) + v3 = v1 + (v2 + v3).
(2) For all v1, v2 ∈ V , v1 + v2 = v2 + v1.
(3) There exists a vector 0 ∈ V such that v + 0 = v for all v ∈ V .
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(4) For each v ∈ V , there exists a vector −v ∈ V such that −v+v = 0.
For v1 + (−v2) we write also v1 − v2.

(5) For all c ∈ R and v1, v2 ∈ V , c(v1 + v2) = cv1 + cv2.
(6) For all c1, c2 ∈ R and v ∈ V , (c1 + c2)v = c1v + c2v.
(7) For all c1, c2 ∈ R and v ∈ V , (c1c2)v = c1(c2v).
(8) For all v ∈ V , 1 · v = v.

An important example of a vector space is Rn, the set of n-tuples
(or n × 1 column vectors) of real numbers, for which vector addition and
multiplication by scalars are defined componentwise as addition and mul-
tiplication of real numbers. The transpose of a column vector x ∈ Rn with
components x1, . . . , xn is the row vector xT = (x1, . . . , xn).

Vectors v1, . . . , vn in a vector space V are said to be (linearly) inde-
pendent if ∑

1≤i≤n
civi = 0

implies that the ci’s are all zero; otherwise the vi’s are said to be (linearly)
dependent. The subset of M of vectors in V of the form

∑
1≤i≤n civi, where

each ci varies over R, is called the span of v1, . . . , vn, denoted [v1, . . . , vn].
Vectors v1, . . . , vn are said to form a basis for V if and only if they are
linearly independent and V is their span, i.e., if and only if each vector in
V has a unique representation of the form

∑
i civi. When v1, . . . , vn is a

basis for V , ci is called the coordinate of
∑

1≤j≤n cjvj with respect to vi.
V is said to be finite dimensional if it has a basis consisting of finitely

many elements. Every basis for a finite dimensional vector space has the
same number of elements; this number is called the dimension of V , de-
noted dim(V ), or just d(V ). If V is an n-dimensional vector space, then
v1, . . . , vn is a basis for V if and only if the vi’s are linearly independent, or,
equivalently, if and only if they span V . The usual coordinate basis for Rn

is comprised of the vectors e(1), . . . , e(n) defined by e
(i)
j = δij .

We assume henceforth that all vector spaces we deal with are finite
dimensional.

7B. Subspaces

A nonempty subset M of a vector space V which is closed under vector
addition and multiplication by scalars is called a subspace, or (linear) man-
ifold, of V . For example, the span [v1, . . . , vm] of given vectors v1, . . . , vm

is a subspace. We write the trivial subspace [0] simply as 0. A subset F
of V of the form F = v0 +M = { v0 +m : m ∈M }, where M is a subspace
and v0 ∈ V , is called a flat, or shifted manifold; F is a flat if and only if
c1f1 + c2f2 ∈ F whenever f1, f2 ∈ F and c1 + c2 = 1. The dimension of F
is defined to be the dimension of M .

Two subspaces of V are said to be disjoint if they have only the zero
vector in common (this notion should not be confused with the set-theoretic



SECTION 7. APPENDIX: RUDIMENTS 43

one). The intersection, M1 ∩M2, of two subspaces is defined to be the
subspace of V consisting of all vectors common to M1 and to M2. To say
M1 ∩M2 = 0 is to say M1 and M2 are disjoint. The sum M1 +M2 of two
subspaces of V is defined to be the subspace of V consisting of all vectors
of the form m1 + m2 where m1 ∈ M1 and m2 ∈ M2. A sum M1 + M2 is
said to be a direct sum, denoted M1 ⊕M2, if M1 and M2 are disjoint, i.e.,
if the representation of m ∈ M1 + M2 as m = m1 + m2 with mi ∈ Mi is
unique. As regards to dimension, one has

d(M1 +M2) + d(M1 ∩M2) = d(M1) + d(M2); (7.1)

in particular, d(M1 ⊕M2) = d(M1) + d(M2).

7C. Linear functionals

A mapping ψ of V into R is called a linear functional on V provided it
preserves addition and scalar multiplication: ψ(c1v1 + c2v2) = c1ψ(v1) +
c2ψ(v2) for all c1, c2 ∈ R and v1, v2 ∈ V . Operations of addition and
scalar multiplication on the set V ∗ of all linear functionals on V are defined
pointwise, so that (ψ1+ψ2)(v) = ψ1(v)+ψ2(v) and (cψ)(v) = cψ(v). Under
these operations, V ∗ is itself a vector space, called the dual of V . V ∗ has
the same dimension as V . Examples of linear functionals on V are the
coordinate functionals ψi defined relative to a given basis v1, . . . , vn for V
by ψi(

∑
1≤j≤n cjvj ) = ci for i = 1, . . . , n.

7D. Linear transformations

A mapping T of a vector space V into a vector space W is called a
linear transformation if it preserves linear structure: T (c1v1 + c2v2) =
c1T (v1) + c2T (v2) for all c1, c2 ∈ R and v1, v2 ∈ V . Addition and scalar
multiplication of linear transformations from V to W are defined pointwise.
A linear functional is simply a linear transformation from V into R1. A
linear transformation T :V →W is called a isomorphism if it is one-to-one
and onto. V and W are said to be isomorphic if there is an isomorphism
mapping one onto the other; isomorphic vector spaces are identical so far as
their linear structure is concerned. The composition of the linear transfor-
mations S:U → V and T :V →W is defined to be the linear transformation
TS:U → W which sends u ∈ U to T (S(u)) ∈ W . A linear transforma-
tion T :V → V such that T = T 2 (≡ TT ) is said to be idempotent. The
linear transformation which leaves each v ∈ V fixed is called the identity
transformation and is commonly denoted by I, or IV .

The range of a linear transformation T mapping V toW is the subspace
of W , denoted R(T ) or R(T ), consisting of all vectors of the form Tv for
v ∈ V . The rank , ρ(T ), of T , is the dimension of R(T ). The null space of
T is the subspace of V , denoted N (T ) or N (T ), consisting of all vectors
in V which are mapped by T into zero in W .
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The formula
d
(R(T )

)
+ d

(N (T )
)

= d(V ), (7.2)

holding for any linear transformation T from V to W , has many applica-
tions. In particular, if V and W have the same dimension and N (T ) = 0,
then T is an isomorphism of V and W . A transformation T such that
N (T ) = 0 is said to be nonsingular. The inverse, T−1, of a nonsingular
transformation exists on R(T ) and is linear.

The matrix of a linear transformation T :V →W with respect to bases
v1, . . . , vm for V and w1, . . . , wn for W is the n × m array [T ] ≡ (tij)
defined by T (vj) =

∑
1≤i≤n tijwi for 1 ≤ j ≤ m, or, equivalently, by the

condition T (
∑

j cjvj) =
∑

i(
∑

j tijcj)wi for c1, . . . , cm ∈ V . If S:U → V
and T :V → W are both linear, then the identity [TS] = [T ][S] holds
relative to fixed bases for U , V , and W .

The transpose of an m×n matrix A = (aij)i=1,...,m, j=1,...n is the n×m
matrix AT = (bji)j=1,...,n, i=1,...,m where bji = aij .
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(3) µ̂JS is minimax, since it dominates the minimax estimator X = PMY.
µ̂JS is not, however, admissible, since by Exercise 4.20 it is itself dominated
by the so called positive-part estimator

ˆ̂µJS ≡
(
1− p− 2

S

)+

X = max
(
0, 1− p− 2

S

)
X, (4.25)

which unlike µ̂JS never reverses the sign of X in estimating µ. It is known
that every admissible rule in the problem at hand must be a smooth func-
tion of the data, so ˆ̂µJS is also inadmissible; a dominating rule has yet to
be found.

4.26 Figure. For the case p = 10 the following diagram displays the risk func-
tions of the the GME µ̂GME = X = PMY , the James-Stein estimator µ̂JS (4.24),
the positive part estimator ˆ̂µJS (4.25), and the generalized Bayes estimator µ̂a of
the next section for the cases a = 1/2 and a = 2 (see (5.13)). The risk functions
depend on µ only through ‖µ‖, which is given on the horiontal axis. Evidently all
four of the alternatives to µ̂GME have substantially smaller risk than µ̂GME for
µ’s near 0, but there is not much difference in the risks of the alternative esti-
mators. The Bayes estimator µ̂a=1/2 is somewhat preferable to µ̂JS and ˆ̂µJS in
the region where those estimators provide a considerable reduction in risk. µ̂a=2

dominates µ̂JS .
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INDEX

acceptance region
similar of type α, 131

adjoint identities, 72
adjoint of a linear transformation

definition of, 38, 39
dependence on the inner product, 72
for a non-orthogonal projection, 139

formula for, given a basis for the
range space, 142

“reverse and perp” rule, 139
for an orthogonal projection, 39
for an orthogonal transformation, 38
properties of, 38–39

admissible estimator, 96
affine estimator, 76
analysis of covariance
A and B transformations, 143
estimation of σ2, 149
F -test of H:µ ∈M0 +N , 152–153

degrees of freedom for, 153
noncentrality parameter for, 154
power of, 154

F -test of H:PMµ ∈M0, 154
formulation of, 143
Gauss-Markov estimators, 144–145
one-way layout with one covariate

estimation of σ2, 150
F -test of the hypothesis of equal

adjusted group means, 154, 155
F -test of the hypothesis of equal

unadjusted group means, 154
Gauss-Markov estimators, 146
introduction to, 142–143
simultaneous confidence intervals

for all contrasts in the adjusted
group means, 151

variances of GMEs, 148–149
Scheffé confidence intervals

for linear functionals of µM ,
150–151

analysis of covariance (cont’d)
Scheffé confidence intervals (cont’d)

for linear functionals of µN , 151
variances and covariances of GMEs,

146–148
analysis of variance

Latin square design, 155–159
one-way layout

ANOVA table for, 25
estimable parametric functionals,

79
estimation of σ2, 70
Gauss-Markov estimation in, 63
Gauss-Markov estimator of an

estimable parametric functional,
81

projections in, 15
simultaneous confidence intervals

for all contrasts in the group
means, 132

testing the hypothesis that the
group means are equal, 109, 114

with a covariate, see analysis of
covariance, one-way layout with
one covariate

two-way additive layout
ANOVA table for, 25
differential effect, 65
estimable parametric functionals,

79–80
estimation of σ2, 71
Gauss-Markov estimation in, 65,

69
Gauss-Markov estimator of an

estimable parametric functional,
81

grand mean, 65
projections in, 17, 24
with a missing observation, see

incomplete observations model,
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analysis of variance (cont’d)
two-way additive layout (cont’d)

with a missing observation (cont’d)
two-way additive layout with a
missing observation

with replicated observations, 183
analysis of variance table

for a Latin square design, 158
for a Tjur system, 25
for the two-way layout, 25

ANCOVA, see analysis of covariance
ANOVA, see analysis of variance

Baranchik’s theorem, 105
bases

canonical, see canonical bases for a
pair of subspaces

basis, 42
coordinates with respect to, 42
orthogonal, 9
usual coordinate basis for Rn, 42

Bayes estimator
as the mean of the posterior distribu-

tion of the parameter given the
data, 92

definition of, 91
extended, 91
formal, 106
generalized, 106
improper, 106
proper, 106
within ε, 91

best linear unbiased estimator, 64
bilinear functionals

definition of, 37
positive definite, 39
representation theorem for, 38
symmetric, 38

BLUE, see best linear unbiased estima-
tor

book orthogonal, see subspaces, book
orthogonal

Borel σ-field, 46

canonical bases for a pair of subspaces,
85

canonical transformation, 75
Cauchy-Schwarz inequality, 10
characteristic function

of a normal random vector, 53
of a random vector, 53

chisquare distribution
central, 54
moment generating function of, 57
noncentral, 54, 55

Poisson representation of, 56–57
Cleveland’s identity, 40
closed form of a residual squared length,

70

Cochran’s theorem
algebraic form of, 20–21
for quadratic forms in normally

distributed random variables, 59
coefficient vector, 36

confirmation method for, 37
direct-construction method for, 37
effect of covariates on, 144
effect of missing observations on, 177
for a coordinate functional, 37

in the case of an orthogonal basis,
62

obtained by partial orthogonaliza-
tion, 61–62

properties of, 62
obtained by projection, 60

collinearity
effect on the variance of a GME, 64

complete statistic
condition for, 90
definition of, 89
in the GLM, 90

composition of linear transformations,
43

confidence intervals
for the value of a linear functional ψ

of µ, 126
relation to the F -test of H:ψ(µ) =

0, 126
simultaneous, see simultaneous

confidence intervals
confidence region procedure, 131
contrasts, 132

spanning set for a space of contrasts,
133

coordinate functional, 37, 43, 61
covariance matrix, 47
covariance operator, 47–48

degrees of freedom
of a chisquare distribution, 54
of a squared length, 25
of a weakly spherical random vector,

51
of an F distribution, 57

design matrix, 1
design of experiments, 26
differential effect

in a Latin square design, 156
in the two-way additive layout, 65

dimension
of a vector space, 42

direct sum, see subspaces, direct sum of
disjoint subspaces, 42
dispersion matrix, 32, 49
dispersion operator (Σ), 49–50

of the projection of a weakly spher-
ical random vector onto a
subspace, 51
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dot-product, 6
convention about re Rn, 6, 45
weighted, 38

used with uncorrelated random
variables, 52

dual space, 43

Efron-Morris estimator of a mean vector
assumed to lie in the space
spanned by the equiangular line,
102

eigenmanifold, 34
eigenvalue, 33
eigenvector, 33
equi-correlated, 73
equiangular vector (e), 3
equivalence relation, 27
ε-Bayes estimator, 91
estimable parametric functional, 77–84

and the covariance of Gauss-Markov
estimators, 81

characterization of, 78–79
subject to constraints, 84

Gauss-Markov estimator of, 80
subject to constraints, 84

in a Tjur design, 82–83
estimation

of a mean, see estimation assuming
normality, Gauss-Markov esti-
mator, James-Stein estimator
of µ

of a variance, see estimation of σ2

estimation assuming normality, 88–107
Bayes estimator of µ versus the prior

NM (0, λIM ), 94
with a hyper-prior on λ, 106

complete sufficient statistic for µ
and σ2, 90

conditional distribution of Θ given
Y = y, when the marginal
distribution of Θ is NM (0, λIM )
and the conditional distribution
of Y given Θ = µ is NV (µ, IV ),
94

desirable properties of the GME of µ
extended Bayes, 95
maximum likelihood estimator, 88
minimax for mean square error, 95
minimum dispersion in the class of

all unbiased estimators, 89
Efron-Morris estimator of µ, 102
maximum likelihood estimators of µ

and σ2, 88–89
joint distribution thereof, 89

minimum dispersion unbiased estima-
tors of µ and σ2, 89

smoothness with respect to µ and σ2

of the expected value of a
function of Y , 90

estimation assuming normality (cont’d)
undesirable properties of the GME

of µ
inadmissibility with respect

to mean square error when
dim(M) ≥ 3., 100

see also James-Stein estimator of µ,
James-Stein type estimators
of µ of the form φ(S)X, Scheffé
confidence intervals

estimation of σ2

effect of covariates, 149
effect of extra observations, 182
effect of missing observations,

171–173
in a Tjur system of subspaces, 71
unbiased, 70–71

potential bias in, 71
under normality, see estimation

assuming normality
see also specific models, such as Latin

square designs and simple linear
regression

expectation
as a nondecreasing function of a

parameter, 117
of a random vector, 46–47
of the squared length of a weakly

spherical random vector, 52
experimental units, 26
exponential family

and completeness, 90
and MLR, 115

extended Bayes estimator, 91
extra observations model, 179–183

F distribution, 57
central, 57
noncentral, 57

MLR property of, 116
Poisson representation of, 57

unnormalized (F∗), 57
F -test of H:µ ∈M0

as a likelihood ratio test, 110–111
as a similar test with maximum

average power over the surface
of certain spheres, 134

as a uniformly most powerful invari-
ant test, 125

when σ2 is known, 125
as a uniformly most powerful test

whose power depends only on
the distance from µ to M0 in σ
units, 137

definition of, 111
effect of covariates, see analysis of

covariance
effect of extra observations, 182
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F -test of H:µ ∈M0 (cont’d)
effect of missing observations, see

incomplete observations model
noncentrality parameter for, 113
power of, 113

as an increasing function of the
noncentrality parameter, 114,
117

simple interpretations of, 111–112
sum of squares for error (SSe), 111
sum of squares for testing H (SSH),

111
unbiasedness of, 117
when M0 is the null space of a

collection of linear functionals
of µ

related confidence intervals,
130–131

when M0 is the null space of a linear
functional of µ, 114

related confidence intervals, 126
when M0 is the null space of a set of

contrasts, 133
factor, 26

balanced, 26
blocks of, 26
equivalence relation for, 27
levels of, 26
orthogonal projection associated

with, 29
subspace associated with, 29
sum of squares associated with, 30
trivial, 26
units, 26

factors
cross-classification of (×), 27, 29
maximum of (∨), 27
minimum of (∧), 28
nestedness of, 27
orthogonal, 30

condition of proportional cell
counts for, 31

partial ordering (≤) of, 27
Tjur design of, see Tjur design

fitted values, 67
flat, 42
four penny problem, 65–66

Gauss-Markov estimator
of a linear functional of µ

center of a confidence interval, 126
closure under linear combinations,

63
covariance between two such

estimators, 64
definition of, 62
effect of covariates, see analysis of

covariance
effect of extra observations, 182

Gauss-Markov estimator (cont’d)
of a linear functional of µ (cont’d)

effect of missing observations, see
incomplete observations model

estimated standard deviation of, 70
guessing method for, 63
invariance under linear transforma-

tions, 74
mean and variance of, 63–64
minimum variance among linear

unbiased estimators, 64
significantly different from zero,

131
used to estimate a mean vector, 69

of an estimable parametric functional
with constraints, 84
without constraints, 80

of µ
as a unique invariant estimator, 77
as possibly distinct from the least

squares estimator, 72
definition of, 67
effect of covariates, see analysis of

covariance
effect of extra observations, 181
effect of missing observations, see

incomplete observations model
invariance under linear transforma-

tions, 74–75
methods for finding, 68, 74–75
minimum dispersion among linear

unbiased estimators, 67
minimum MSE among affine

estimators having bounded
MSE, 76

risk under squared error, 91
used to estimate linear functionals,

69
see also estimation assuming normal-

ity, James-Stein estimator of µ,
using the wrong inner product,
as well as specific models, such
as the Latin square design and
simple linear regression

Gauss-Markov theorem, 2
for estimable parametric functionals,

80, 84
for linear functionals of µ, 64
for linear transformations of µ, 67
for µ, 67

when there are missing observa-
tions, 163

quantification of, 85–87
general linear model

basis case, see multiple linear regres-
sion

geometric formulation of, 2, 60
matricial formulation of, 1
reduction to canonical form, 75
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generalized Bayes estimator, 106
GLM, see general linear model
GME, see Gauss-Markov estimator
goodness of fit statistic

asymptotic distribution of, 56
Gram-Schmidt orthogonalization, 9

in the one-sample problem, 10
grand mean

in a Latin square design, 156
in the two-way additive layout, 65

Hsu’s theorem, 137
hypothesis test

admissible, 137
invariant, 120
power function of, 123, 134
randomized, 134
similar of size α, 134
unbiased of level α, 134
uniformly most powerful, 123
uniformly most powerful invariant,

123
see also F -test of H:µ ∈M0

hypothesis testing assuming normality
F -test, see F -test of H:µ ∈M0

general formulation of the problem,
108–109, 131

likelihood ratio test of H:µ ∈ M0,
110

see also confidence intervals, simul-
taneous confidence intervals,
estimation assuming normality,
invariance in hypothesis testing,
as well as specific models, such
as the Latin square design and
simple linear regression

idempotent, see linear transformations,
idempotent

identity transformation, 43
improper Bayes estimator, 106
inadmissible estimator, 96
incomplete observations model
A and B transformations, 164
diagrams for, 164–165
estimation of σ2, 171–173
F -test of H:µ ∈M0, 173–174

degrees of freedom for, 174
noncentrality parameter for, 174
Yates procedure, 174, 176

formulation of, 162–165
Gauss-Markov estimator of a linear

functional of µ, 177–178
Gauss-Markov estimator of µ

ANCOVA method for, 169–170
consistency equation for, 165–167
definition of, 163
quadratic function method for, 168

Gauss-Markov theorem for, 163, 177

incomplete observations model (cont’d)
Scheffé confidence intervals, 179
two-way additive layout with a

missing observation
F -test of the null hypothesis of no

row effects, 174–176
Gauss-Markov estimator of µ, 167,

169–170
GMEs of ν, αi, and βj , 167
introduction to, 160–161
variances of the GMEs of ν, αi,

and βj , 178–179
indicator function of a set, 29
inner product

between two sets of vectors, 11
of linear functionals, 61
of vectors, 6

inner product space, 6
integrability of random variables

facts about, 105
intersection of subspaces, 43

and projections, 10
invariance in hypothesis testing, 118–125

and the F -test, 125
constancy on orbits, 120
distinguish between orbits, 120
group of transformations leaving

the testing problem invariant,
119–120

invariance reduction, 122
and UMP tests, 123

invariant test, 120
maximal invariant, 120
orbits, 120
principle of invariance, 120
reduced problem, 122

inverse of a linear transformation, 44
isomorphism of vector spaces, 43

James-Stein estimator of µ
Bayesian motivation for, 96–97
definition of, 97
improvement in Bayes risk, 100
inadmissibility of, 101
positive part thereof, 101
regression motivation for, 97
risk of, 97

compared to the risk of other
estimators, 101

upper bound on, 100
shrinkage towards a subspace, 102
when σ2 is unknown, 102

James-Stein theorem, 97
James-Stein type estimators of µ of the

form φ(S)X, 96–102
admissible minimax generalized

Bayes, 107
as spherically symmetric estimators,

103
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James-Stein type estimators of µ of the
form φ(S)X (cont’d)

condition to be minimax, 105
motivation for, 103
risk of, 99

compared to the risk of φ+(S)X,
99

unbiased estimator for, 104

Latin square, 156
Latin square design, 155–159
least squares, 8
least squares estimator of µ, 72
Lebesgue measure, 54
Lehmann-Scheffé theorem

for complete sufficient statistics, 90
length of a vector, 7
likelihood ratio test of H:µ ∈M0, 110
linear algebra, review of, 41–44

basis, 42
composition of two linear transforma-

tions, 43
coordinate functional, 43
dimension, 42
direct sum of subspaces, 43
disjoint subspaces, 42
dual space, 43
flat, 42
idempotent linear transformation, 43
identity transformation, 43
intersection of subspaces, 43
inverse of a linear transformation, 44
isomorphism, 43
linear dependence, 42
linear functional, 43
linear independence, 42
linear transformation, 43
manifold, 42
matrix of a linear transformation, 44
nonsingular linear transformation, 44
null space of a linear transformation,

43
range of a linear transformation, 43
rank of a linear transformation, 43
span, 42
subspaces, 42
sum of subspaces, 43
transpose

of a matrix, 44
of a vector, 42

vector space, 41
linear dependence of vectors, 42
linear functional

coefficient vector of, see coefficient
vector

confidence interval for, see confidence
interval for the value of a linear
functional ψ of µ

coordinate functional, 37, 43

linear functional (cont’d)
definition of, 36, 43
Gauss-Markov estimator of, see

Gauss-Markov estimator of a
linear functional of µ

inner product for, 61
norm of, 61
representation theorem for, 36
testing an hypothesis about, 114

linear independence of vectors, 42
linear transformation

adjoint of, see adjoint of a linear
transformation

composition of, 43
definition of, 43
eigenmanifolds of, 34
eigenvalues of, 33
eigenvectors of, 33
idempotent, 12, 43
identity, 43
inverse of, 44
matrix of, 33, 44

notation for, 44
nonsingular, 44
null space of (N ), 43
orthogonal, see orthogonal, transfor-

mation
orthogonal projection, see projec-

tions, orthogonal
range of (R), 43
rank of (ρ), 43
self-adjoint, see self-adjoint linear

transformation
uniqueness of

in terms of inner products, 8
LSD, see Latin square design

manifold
eigen, 34
regression, 60
see also subspaces

matrix
of a linear transformation, 33
of a quadratic form, 58
of the adjoint of a linear transforma-

tion, 38
symmetric

diagonalization of, 36
maximal invariant, 120
maximum likelihood estimators of µ

and σ2, assuming normality,
88–89

mean
grand

in the two-way additive layout, 65
of a random vector, 46–47
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mean square error
definition of, 75
formula for, 76, 91
normalized, 95

method of super
b

scripts, 24
metric induced by an inner product, 10
minimax estimator

as a constant risk, extended-Bayes
estimator, 91

definition of, 91
minimum mean square error predictor,

11
Minkowski’s inequality, 10
missing observations model, 162

see also incomplete observations
model

mixed-up observations model, 162
see also incomplete observations

model
MLR, see monotone likelihood ratio
Möbius function, 25
Möbius inversion formula, 25
models

analysis of covariance
one-way layout with one covariate,

see analysis of covariance
analysis of variance

one-way layout, see analysis of
variance

two-way layout, see analysis of
variance

extra observations, see extra observa-
tions model

four penny problem, 65–66
general linear, see general linear

model
incomplete observations, see incom-

plete observations model
Latin square design, 155–159
missing observations, see incomplete

observations model
mixed-up observations, see incom-

plete observations model
multiple linear regression, see multi-

ple linear regression
one-sample problem, see one-sample

problem
replicated observations model, see

extra observations model
simple linear regression, see simple

linear regression
split plot design, see split plot design
triangle problem, see triangle prob-

lem
two-sample problem, see two-sample

problem
monotone likelihood ratio

and exponential families, 115
and hypothesis testing, 124

monotone likelihood ratio (cont’d)
and the expectation of a nondecreas-

ing function, 117
closure under composition, 116
definition of, 115
examples of

exponential families, 115
noncentral F family, 116
Poisson family, 115
unnormalized F family, 115
unnormalized t family, 118

stochastic monotonicity, 117
MSE, see mean square error
multiple linear regression

coordinate functionals in, 61
estimable parametric functionals, 79
estimation of σ2, 71
expected response at the mean values

of the independent variables
Gauss-Markov estimation of, 65

regression coefficients
covariances of, 66
expectations of, 66
formula for, 66
normal equations for, 63
variances of, 64

noncentrality parameter
of a chisquare distribution, 54
of an F distribution, 57

nonestimable parametric functional, 79
completely undetermined by µ, 79
no unbiased estimator for, 80

nonsingular distribution, 50–51
nonsingular linear transformation, 44
norm

of a linear functional, 61
of a vector, 7

normal distribution, 53
and conditional distributions, 93

conditional distribution of Θ given
Y = y, when the marginal
distribution of Θ is NM (0, λIM )
and the conditional distribution
of Y given Θ = µ is NV (µ, IV ),
94

and marginal distributions, 93
and quadratic forms, 58–59
characteristic function for, 53
density of, 54
in a lower dimensional subspace, 54

normal equations
abstract formulation of, 40
and estimable parametric functionals,

80–81, 84
and Gauss-Markov estimation, 68
basis formulation of, 10, 69
obtained via Gauss-Markov estima-

tion, 63
normalized mean square error, 95
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notational conventions
difficulty level of exercises, 5
inner product between

a single vector and a set of vectors,
11

two sets of vectors, 11
markers for the end of a proof,

example, exercise, and part of a
problem set, 5

matrices versus linear transforma-
tions, 5

numbering scheme, 5
summation over non-missing sub-

scripts (⊕), 167
null space of a linear transformation, 43

observed values, 67
one-sample problem

and Gram-Schmidt orthogonalization,
10

condition for the least squares and
Gauss-Markov estimators to be
the same, 73

equi-correlated case, 73
heteroscedastic case, 52
independence of the sample mean and

variance, 3
projections in, 9–10
re Cochran’s theorem, 59

one-way layout, see analysis of variance,
analysis of covariance

open form of a residual squared length,
70

orbit, 120
orthogonal

basis, 9
and Gauss-Markov estimation, 68

complement of a subspace, 12
properties of, 12

complement of one subspace within
another, 13

and spanning vectors, 13
decompositions, 19
factors, see factors, orthogonal
polynomials

derived from 1, i, and i2, 7
projection, see projections, orthogo-

nal
subspaces, 16
transformation, 7

adjoint of, 38
inverse of, 38
reflection through a subspace, 13
used to characterize strict spheric-

ity, 53
used to characterize weak spheric-

ity, 51
vectors, 7

parameter vector, 1
parametric functional, 78

estimable, see estimable parametric
functional

nonestimable, see nonestimable
parametric functional

partial order relation (≤) on
factors, 27
self-adjoint linear transformations, 13

partial orthogonalization
in the analysis of covariance, 145

partially ordered set, 23
greatest lower bound (∧), 28
least upper bound (∨), 27
minimal element, 23
Möbius function for, 25
Möbius inversion formula for, 25
principle of induction for, 23
zeta function for, 26

perpendicularity
of subspaces, 16
of vectors, 7

positive definiteness, 6, 39
power function, 123

of the F -test, 113
effect of covariates, 154
effect of extra observations, 183
effect of missing observations, 174

prediction
mean square error of, 11

principle of invariance
in estimation, 77
in hypothesis testing, 120

prior, 91
projections

non-orthogonal
adjoints of, 139
as idempotent linear transforma-

tions, 139
definition of, 138
formula for the adjoint, given a

basis for the range space, 142
formula for, given a basis for the

range space, 141
partial inverses to, 140

orthogonal
adjoints of, 39
and minimum distance, 8, see also

Cleveland’s identity
and residuals, 8
as idempotent self-adjoint linear

transformations, 12–13
definition of, 8
differences of, 14–15
matrix for, 11
obtained by making a linear

transformation of the problem,
74
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projections (cont’d)
orthogonal (cont’d)

onto OM for an orthogonal
transformation O, 38

onto a one-dimensional space, 9, 13
onto a subspace of a subspace,

14–15
onto a subspace that is an element

of a Tjur system, 23
onto a sum of mutually orthogonal

subspaces, 16
onto arbitrary subspaces, 10
onto the intersection of two

subspaces, 18
onto the orthogonal complement

of the null space of a set of
contrasts, 133

products of, 17–18
sums of, 16–17
used in establishing the distri-

butions of quadratic forms,
58

used to find Gauss-Markov estima-
tors, 68

proper Bayes estimator, 106
proportional cell counts

condition for orthogonal factors, 31
Pythagorean theorem, 7

quadratic form
definition of, 39
of a normal random vector

distribution of, 58–59
on an inner product space, 58
representation theorem for, 39

random vectors
characteristic function for, 53
covariance operators for, 47–48
definition of, 45
dispersion operators of, 49–50

spectral representation of, 50
distribution of projections of

under first and second moment
conditions, 54–55

under normality assumptions, 55
expectation of, 46–47
mean of, 46–47
normally distributed, 53

conditional distribution, 93
marginal distribution, 93
quadratic forms in, 58–59

spherically distributed, 53
uncorrelated, 48
weakly spherical, 51–52

variance parameter of, 51
with nonsingular distributions, 50–51
with singular distributions, 50–51

range of a linear transformation, 43

rank of a linear transformation, 43
reduction to canonical form, 75
regression, see multiple linear regression,

simple linear regression
regression coefficients, 66

dependence on the number of ex-
planatory variables, 67

regression manifold, 60
regression matrix, 1
relative orthogonal complement, 13

and spanning vectors, 13
replicated observations model, 180
representation theorem

for bilinear functionals, 38
for linear functionals, 36
for quadratic forms, 39

residual squared length
closed form of, 70
open form of, 70

residuals, 8
inner products of, 141
length of, 8
uncorrelated with fitted values, 68

risk, 91
of the GME of µ relative to mean

square error, 91
see also James-Stein estimator of µ,

James-Stein type estimators
of µ of the form φ(S)X

R2

as the ratio of explained variation to
total variation, 68

as the square of the correlation
coefficient between the observed
and fitted values, 68

Scheffé confidence intervals
for all contrasts in the group means

in one-way ANOVA, 132
for linear functionals of µ, 127–129

effect of covariates, see analysis of
covariance

effect of missing observations, see
incomplete observations model

for linear functionals of the compo-
nent of µ orthogonal to M0,
132

relation to the F -test, 130–131
Scheffé multiplier, 128
SDFZ, see significantly different from

zero
self-adjoint linear transformation

as a covariance operator, 33
definition of, 12
extremal characterization of the

eigenvalues thereof, 34
matrix for, 33
partial ordering (≤) of, 13
positive definite, 39
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self-adjoint linear transformation
(cont’d)

positive semi-definite, 36
square root of, 36

range and null space of, 13
spectral theorem for, 33–36
trace of, 58

and preservation of order (≤), 76
shrinkage estimator, 102

see also James-Stein estimator of µ,
James-Stein type estimators
of µ of the form φ(S)X

significantly different from zero, 131
simple linear regression

coefficient vector for the slope func-
tional, 62

confidence interval(s)
for a single predicted value, 126
for all predicted values, 129
for predicted values when the

predictand ranges over an
interval, 129

definition of, 1
estimated SD of

the response at the mean of the
predictor variable, 70

the slope coefficient, 70
estimator of σ2, 70
Gauss-Markov estimate of the slope,

63
projections in, 10, 11
testing for zero slope, 108, 113–114
variance of the GME of the slope

coefficient, 64
simultaneous confidence intervals

for a line segment of linear function-
als, 129

for the values of ψ(µ) for a linear
space of linear functionals ψ, see
Scheffé confidence intervals

singular distribution, 50–51
span of vectors, 42
spectral theorem, 33
spherical distribution, 53
spherically symmetric estimator, 103
split plot design, 31

estimable parametric functionals, 84
Stein’s lemma, 103
Stein-Efron-Morris theorem, 104
stochastic monotonicity, 117
Strawderman-Berger theorem, 107
subspaces

book orthogonal, 17–18
see also Tjur system

definition of, 42
direct sum (⊕) of, 19, 43
disjoint, 42
eigenmanifolds, 34
intersection (∩) of , 43

subspaces (cont’d)
non-orthogonal

measuring the degree of, 85
orthogonal (⊥ ), 16
orthogonal complements (·⊥ ) of, 12

properties of, 12
orthogonal decompositions of, 19
perpendicular (⊥ ), 16
relative orthogonal complements of,

13
and spanning vectors, 13

shifted, 42
sum (+) of, 43
Tjur system of, see Tjur system of

subspaces
sufficient statistic

definition of, 89
factorization criterion for, 90
for µ and σ2, 90
having minimum dispersion in the

class of all unbiased estimators,
90

sum of squares for error (SSe), 111
sum of squares for testing H (SSH), 111
summation over non-missing subscripts

(⊕), 167

t distribution
unnormalized noncentral

definition of, 118
MLR of, 118

test, see F -test of H:µ ∈ M0, hypothe-
sis test

Tjur design, 31
estimable parametric functional,

82–83
factor structure diagram for, 32
Gauss-Markov estimator of an

estimable parametric functional,
82–83

Tjur system of subspaces, 21–26
analysis of variance table for, 25
and estimation of σ2, 71
and Gauss-Markov estimation, 69
method of super

b
scripts for, 24

Möbius inversion formulas for, 26
partial order on, 21
representation of, 22
structure diagram for, 24

Tjur’s theorem, 22–23
Tjur, Tue, 21
trace

of a linear transformation, 76
of a self-adjoint linear transformation,

58, 76
transformation, see linear transforma-

tion
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triangle problem
coefficient vectors in, 61
covariances of GMEs, 64
Gauss-Markov estimation in, 63
testing the equilateral hypothesis,

108, 113
trivial factor, 26
two-sample problem, 1–2
two-way layout, see analysis of variance

UMP, see uniformly most powerful
UMPI, see uniformly most powerful

invariant
unbiased

estimator, 63
hypothesis test, 134

uncorrelated random vectors, 48
uniformly most powerful, 123
uniformly most powerful invariant, 123
units factor, 26
using the wrong inner product

conditions for false and true estimates
to be the same

for linear functionals of µ, 74
for σ2, 73
for the mean vector µ, 72–73

difference between the false and true
GMEs of µ, 86

effect on residual squared length, see
Cleveland’s identity

ratio of the variances of the false and
true GMEs of a linear functional
of µ, 87

value of a statistical game, 91
variance parameter

estimation of, see estimation of σ2

of a weakly spherical random vector
assumptions about, 60
definition of, 51

variance-covariance matrix, 49
variation

addition rule for, 68
explained, 68
residual, 68
total, 68

vector space, 41
basis for, 42
dimension of, 42
dual of, 43
finite dimensional, 42
isomorphism of, 43
manifolds of, 42
subspaces of, 42

vectors
angle between, 7
equiangular (e), 3
length of, 7
linear dependence of, 42
linear independence of, 42
norm of, 7
orthogonal, 7
orthogonal projection of, 8
span of, 42
uniqueness of

in terms of inner products, 8

Wald’s theorem, 134
corollaries to, 137
reformulation of, 135

weak sphericity, 51–52
achieved by changing the inner

product, 52
achieved by transformation, 52

weighing design, 66

Yates procedure, 174

zeta function, 26


