
In the discussion of the first simulation and Fig. 1, you seem to get a little ahead of

yourself. You start comparing PC, PFC, and OLS well before you give us any reason to

believe that OLS is a valid comparison. As I understand it, the comparison with OLS

depends on two assumptions: that E(y|x) is linear in x and that Γ has only one column –

as in the simulation model (7). I think a casual reader would not pick up either of those

points (especially the latter) and in any case, they should be explained prior to discussing

the relative merits of the three methods. Another point that does not seem clear to me is

that I believe, but am not completely positive, that for this simulation PFC is the correct

model, so that its superior performance should not be surprising.

I have never been a fan of partial least squares. In fact, I believe that only a bad

estimation procedure used in the algorithm keeps it from being idiotic. Nonetheless, it is

a procedure many people have used for dimension reduction in these problems and I was

wondering if you wanted to mention it.

My first reaction to model (2) is that it was strikingly similar to the factor analysis model.

Do you want to mention any relationship?

Page 5, last line: I believe “statistics” should be singular.

Page 8, line −10: I believe “setting” should be plural.

Page 12, line 1: “then, apart from constants,”

Page 13, last paragraph of Section 3: Please explain more.

Page 18: None of Section 5.2 was clear to me.

Page 21: I believe the reference to Cox (1972) should be to Cox (1968).

Page 20, paragraph around (10): I do not understand why there is a distinction to be

made from what you were doing for model (2). Here you are minimizing |G0Σ̂G0| which, in

the context of this discussion, does not seem very different to me from minimizing tr[Σ̂QG] =

tr[G′
0Σ̂G0].
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Page 22, first display: I believe what you are saying is that you can pick M0 to maximize

the first line of this display and pick M to maximize the second line, which gives you (13).

Can you give a reference for that result? It certainly is not obvious to me.

Page 23, two lines above first display: I believe “subsets” should be singular.

I really liked the observation after Prop. 5.

Section 6.4: In Figure 2a,b is there any reason you do not look at variances less than 1?

For both simulations, it might be good to explain why you chose to look at angles between

estimates rather than some other measure. It is probably worth reiterating that, as in the

first simulation, it is the nature of Γ that makes it appropriate to compare your results with

those of a forward regression (y on x).

Page 25, line 4: I think it would be clearer to say, “set, and in the simulation when”

Page 25: In the discussion of Figure 2d, initially I wondered how much this has to do

with looking at PFC(all) as opposed to just having a larger set of vectors to search over –

but your discussion makes it clear that it matters where you get the vectors from.

However, I had a big problem with the fact that the residual candidate works well for

σ0
.
= 1 because it seems to me that you should have the same problems there as you have

with the PFC(PC) when σ0
.
=

√
2.

Page 28, line 10: I think it should be σ0 not σY .

Page 30, line 1: I think it should be “the fact that”

Page 31, line −2: “connection with OLS requireS”

Page 31, last line: This almost gives me the impression that you are thinking of these

procedures as an end product. Throughout, I’ve been thinking of this as finding a good

starting point for regressing y on x (see attached discussion). The discussion in the middle

of page 36 seems to confirm the end product point of view, if that is so, it is something

I totally missed in the paper – perhaps because I had already set my mind in a different

direction. On the other hand, the discussion at the bottom of page 36 seems to confirm my

view.
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Page 32: On line 9, drop one “subspace”. On line 14, “provide”

Figure 3: Isn’t the moral of this simulation that (a) knowing ∆ is such a huge advantage

that it dwarfs all other issues and (b) when you don’t know ∆, with this simulation where

the true x on y relationship is a simple linear regression, modeling x on y using either a

simple linear regression (OLS) or a cubic polynomial (PFC-Poly) works much better than

using a step function with 8 levels (SIR)?

Page 34, third line above Discussion: “The same limitation do no occur” Second line

of Discussion: “As a consequence”? Tenth line of Discussion: “from a recent dimension

reduction methods”

Page 35, Fisher quotation: My 1970 version of the book has, “regarded as (i.) the study”

– no second “as”.

Page 39, first line of D: “it is known”

Page 43, Hotelling reference: “complex”
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Dimension reduction, nonparametric regression, and multivariate

linear models.

It seems to me that the key issue in this development is whether Cook’s models (2), (5),

(9), and (12) are broadly reasonable. The question did not seem to be extensively addressed.

If they are appropriate, the results in the corresponding Propositions are rather stunning. It

has long been known that the best regression model available – technically the best predictor

of a random variable y based on a p dimensional random vector x – is the conditional mean

E(y|x). The problem with this result is that it requires us to know the joint distribution of

(x′, y). Most of what we commonly recognize as regression analysis is an attempt to model

the relationship E(y|x). This includes linear regression, nonlinear regression, generalized

linear models, and the various approaches to “nonparametric” (actually, highly parametric)

regression. Under the models being considered, there exists a p × d matrix Γ such that

y|x ∼ y|Γ′x.

This means that E(y|x) = E(y|Γ′x) regardless of what modeling strategy we choose to use. If

anything, this dimensionality reduction from p to d is of more importance to nonparametric

regression than other forms because, as the number of predictor variables increases, nonpara-

metric regression gets hit harder by the curse of dimensionality than less highly parametric

forms. As a result, nonparametric regression should benefit most from the existence of a

generally valid reduction in dimensionality.

The issue with Cook’s models is to estimate the column space of Γ, say, C(Γ). In the first

six sections, the results are all closely tied to the eigenvectors (principal component vectors)

of some estimated covariance matrix for the predictor variables x, say Σ̂. For model (2), the

space is spanned by the first d principal component vectors of the usual Σ̂. For model (5),

the space is spanned by the first d principal component vectors of a restricted version of Σ̂.

For models (9) and (12), the estimation procedure is a bit more complicated. The key is
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that for both models (9) and (12) the population covariance matrix of x can be written as

Σ = ΓV DV ′Γ + Γ0V0D0V
′
0Γ0

with D and D0 diagonal matrices in such a way that

Σ(ΓV ) = (ΓV )D, Σ(Γ0V0) = (Γ0V0)D0.

This implies that the eigenvectors of Σ are either in C(Γ) or in C(Γ0) ≡ C(Γ)⊥, the orthog-

onal complement of C(Γ). The problem is to figure out which d out of the p orthogonal

eigenvectors belong in C(Γ). To estimate C(Γ), find the orthogonal eigenvectors of Σ̂, say,

v1, . . . , vp and check the likelihood of every one of the p choose d combinations that has d of

the vis in C(Γ) and the remaining p − d vectors in the orthogonal complement. Whichever

combination maximizes the likelihood, provides the estimate of C(Γ). In case
(

p

d

)

is large,

Cook provides a sequential selection method. The key difference between the procedures for

models (9) and (12) is that the likelihoods are different.

The remainder of my discussion is an attempt to put the question of estimating the

reduced space into the context of multivariate linear model theory. To do this, I will change

Cook’s notation completely, so that the problem looks more like standard multivariate linear

models, but then re-identify the parts of the problem that interest Cook. I do not presume

that any of this is new to Cook, but I found it helpful in understanding the process.

In discussing multivariate linear models, liberal use is made of Kronecker products, Vec

operators, and their properties, see, for example, Christensen (2002, Definition B.5 and

Subsection B.5). Recall also that for a univariate linear model Y = Xβ + e, E(e) = 0,

Cov(e) = V ,

SSE ≡ (Y − Xβ̂)′V −1(Y − Xβ̂) = Y ′V −1(Y − Xβ̂).

Moreover, least squares estimates are BLUEs, and thus maximum likelihood, if C(V X) ⊂

C(X). We will apply these facts to the multivariate models. Finally, let J s
r denote an r × s
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matrix of 1s with Jr ≡ J1
r and let PA = A(A′A)−A′ be the perpendicular projection operator

(ppo) onto C(A) with r(A) the rank of A.

The standard multivariate linear model involves dependent variables y1, . . . , yq. If n

observations are taken on each dependent variable, we have yih, i = 1, . . . , n, h = 1, . . . , q.

Let Yh = [y1h, . . . , ynh]
′ and y′

i = [yi1, . . . , yiq]. For each h, we have a linear model.

Yh = Xβh + eh, E(eh) = 0, Cov(eh) = σhhI,

where X is a known n × p matrix that is the same for all dependent variables, but βh and

the error vector eh = [e1h, . . . , enh]
′ are peculiar to the dependent variable Yh.

The multivariate linear model consists of fitting the q linear models simultaneously. Let-

ting

Yn×q = [Y1, . . . , Yq], Bp×q = [β1, . . . , βq], en×q = [e1, . . . , eq],

the multivariate linear model is

Y = XB + e . (1)

Alternatively, thinking of X as a matrix with rows x′
i and e as having rows ε′i, we can write

the multivariate linear model as

y′
i = x′

iB + ε′i, i = 1, . . . , n.

To perform maximum likelihood, we assume that the εis are independent N(0, Σ) random

vectors. It is reasonably well known that for any ppo PA,

EY |X(Y ′PAY ) = r(A)Σ + B′X ′PAXB. (2)

Σ is now being used for the conditional covariance matrix of y|x, whereas Cook used Σ for

the marginal covariance matrix of x.

A generalization of the multivariate linear model that is often associated with growth

curve models, cf. Christensen (2001) is

Y = XΓZ ′ + e (3)
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where the unknown parameter matrix B in (1) is replaced by the product of a reduced

parameter matrix Γ that is p×d and a fixed, known matrix Z that is q×d with r(Z) ≤ d < q.

This is essentially Cook’s model (5) when applied to data and using drastically different

notation. (Our Y is his X, our X is his known function of y, Fy, our Z is his Γ. etc.) The

ultimate goal of our exercise is to drop the assumption that we know Z and estimate it, or

more properly C(Z), from the data. But for now, we act as if Z is known. Note that the

“growth curve” model specifies something akin to a linear model for each row of Y ,

yi = Z(Γxi) + εi. i = 1, . . . , n

Moreover, using Kronecker products and Vec operators, we can turn the multivariate growth

curve model (3) into a univariate linear model.

Vec(Y ) = [Z ⊗ X]Vec(Γ) + Vec(e) . (4)

with

Vec(e) ∼ N(0, [Σ ⊗ In]).

There are a couple of refinements to model (4) used in Cook’s development. First, the

growth curve model is specified as

Y = Jµ′ + XΓZ ′ + e . (5)

with J ′X = 0 and Z ′Z = Id. As a linear model (5) becomes

Vec(Y ) = [Iq ⊗ Jn]µ + [Z ⊗ X]Vec(Γ) + Vec(e) .

Second is the assumption in Cook’s models (2) and (5) that

Σ = σ2Iq,

in which case,

Cov[Vec(e)] = σ2[Iq ⊗ In] = σ2Inq,
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so standard estimation results apply to the model. In particular, least squares estimates of

the parameters µ and Vec(Γ) are maximum likelihood estimates and the likelihood function

for fixed σ2 evaluated at the maximum likelihood estimates of µ and Γ is, ignoring the

constant,

− nq

2
log(σ2) − SSE

2σ2
. (6)

Performing the usual computations necessary to finding least squares estimates, but

using properties of Kronecker products and Vec operators and exploiting the fact that since

J ′X = 0 we have C([Iq ⊗Jn]) ⊥ C([Z ⊗X]) so that estimation of µ and Γ can be performed

separately, the least squares estimates reduce to

µ̂ = ȳ· Γ̂ = (X ′X)−X ′Y Z(Z ′Z)−

or, alternatively,

XΓ̂Z = PXY PZ .

The maximum likelihood estimate of σ2 is obtained by differentiating (6) with respect to σ2

and setting it equal to 0, yielding σ̂2 = SSE/nq. In particular, the perpendicular projection

operator onto C([Iq ⊗ Jn], [Z ⊗ X]) is [Iq ⊗ (1/n)Jn
n ] + [PZ ⊗ PX ], so

SSE = Vec(Y )′[Iq ⊗ (I − (1/n)Jn
n )]Vec(Y ) − Vec(Y )′[PZ ⊗ PX ]Vec(Y )

= ‖Vec[(I − (1/n)Jn
n )Y ]‖2 − ‖Vec(PXY PZ)‖2 (7)

= tr[Y ′(I − (1/n)Jn
n )Y ] − tr[PZY ′PXY PZ].

Using notation analogous to Cook’s, three estimators that we will use frequently are

Σ̂ ≡ 1

n
Y ′
(

I − 1

n
Jn

n

)

Y, Σ̂fit ≡
1

n
Y ′PXY, Σ̂res ≡ 1

n
Y ′
(

I − 1

n
Jn

n − PX

)

Y.

Note that Σ̂ is the maximum likelihood estimate of the covariance matrix when fitting the

usual multivariate one-sample model Y = Jnµ′ + e. Using the assumption, Z ′Z = Id so that

ZZ ′ = PZ ,

SSE = tr[nΣ̂] − tr[Z ′nΣ̂fitZ].
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We are finally in a position to address Cook’s question, the fact that we do not actually

know Z. To maximize the likelihood (6) as a function of Z we need to maximize tr[Z ′nΣ̂fitZ]

as a function of Z subject to Z ′Z = Id. If we think about finding the columns of Z

sequentially, i.e., finding z1 to maximize z′Σ̂fitz subject to ‖z1‖2 = 1, then finding z2 to

maximize z′Σ̂fitz subject to ‖z2‖2 = 1 and z′2z1 = 0, and so on, this is a standard problem

in multivariate analysis that is solved by finding the eigenvectors of Σ̂fit relative to the

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λq ≥ 0. Of course, since Z is q × d, we consider only the first d

eigenvectors.

To examine a model equivalent to Cook’s model (2), we consider the most extreme

(largest) choice for X which is C(X) = C(Jn)⊥. In this case, PX = In − (1/n)Jn
n so that

Σ̂fit = Σ̂. It follows that the maximum likelihood estimate of Z consists of the first d

principal component vectors. As pointed out by Cook, the number of parameters in our Γ

matrix is pd. However, with this choice of X, p = n − 1, so the number of parameters rises

with the sample size.

For Cook’s models (9) and (12) in section 6, the covariance structure changes. As indi-

cated earlier, the estimation methods ultimately involve determining which of the principal

component directions are most likely where principal components can be computed from

some estimate of Σ, which may be any, or preferably all, of Σ̂, Σ̂fit, or Σ̂res. For Cook’s

model (12) we again have

Vec(Y ) = [Iq ⊗ Jn]µ + [Z ⊗ X]Vec(Γ) + Vec(e)

but recalling that Z ′Z = Id, we now incorporate a matrix Z0 with Z ′
0Z = 0 and Z ′

0Z0 = Iq−d

and assume

Vec(e) ∼ N(0, [Z0Ω
2
0Z

′
0 + ZΩ2Z ′ ⊗ In]).

Observe that least squares estimates will still be BLUEs and thus maximum likelihood

estimates because C([Z0Ω
2
0Z

′
0 + ZΩ2Z ′ ⊗ In][Z ⊗ X]) ⊂ C([Z ⊗ X]).
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The SSE now involves the perpendicular projection operators as in (7) but also involves

the inverse of the covariance matrix. With our assumptions about Z and Z0,

[Z0Ω
2
0Z

′
0 + ZΩ2Z ′ ⊗ In]−1 = [Z0Ω

−2
0 Z ′

0 + ZΩ−2Z ′ ⊗ In].

The SSE becomes

SSE

= Vec(Y )′[(ZΩ−2Z ′ + Z0Ω
−2
0 Z ′

0) ⊗ (I − (1/n)Jn
n )]Vec(Y ) − Vec(Y )′[ZΩ−2Z ′ ⊗ PX ]Vec(Y )

= Vec(Y )′Vec[(I − (1/n)Jn
n )Y (ZΩ−2Z ′ + Z0Ω

−2
0 Z ′

0)] − Vec(Y )′Vec(PXY ZΩ−2Z ′)

= tr[Y ′(I − (1/n)Jn
n )Y (ZΩ−2Z ′ + Z0Ω

−2
0 Z ′

0)] − tr(Y ′PXY ZΩ−2Z ′)

= tr[Ω−2
0 Z ′

0Y
′(I − (1/n)Jn

n )Y Z0] + tr{Ω−2Z ′[Y ′(I − (1/n)Jn
n )Y − Y ′PXY ]Z}

= tr[Ω−2
0 Z ′

0nΣ̂Z0] + tr{Ω−2Z ′[nΣ̂ − nΣ̂fit]Z}

The likelihood will be

−n

2
log(|Z0Ω

2
0Z

′
0 + ZΩ2Z ′|) +

−1

2
SSE =

−n

2
log(|Ω2

0|) +
−n

2
tr[Ω−2

0 Z ′
0nΣ̂Z0]

+
−n

2
log(|Ω2|) +

−n

2
tr[Ω−2Z ′[nΣ̂ − nΣ̂fit]Z]

which, maximizing over Ω and Ω0, Cook indicates reduces to

−n

2
log(|Z ′

0nΣ̂Z0|) +
−n

2
log(|Ω−2Z ′[nΣ̂ − nΣ̂fit]Z|).

As before, Cook’s model (9) can be viewed as the special case where C(X) = C(Jn)
⊥, so

that the second term in the likelihood disappears.

To continue this discussion, we need to leave the conditional world of linear models and

consider the unconditional expected values of Σ̂, Σ̂fit, and Σ̂res. Conditionally, applying

equation (2) to model (5) when J ′A=0 gives

EY |X(Y ′PAY ) = r(A) Σ + ZΓ′X ′PAXΓZ ′. (8)
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For Σ̂ and Σ̂fit the appropriate ppo has PAX = X and for Σ̂res the ppo has PAX = 0.

We have assumed that J ′X = 0 which is only reasonable if the random rows of X have

been adjusted by their sample means, nonetheless it is reasonable to define the marginal

covariance matrix of a row of X as

Vx ≡ 1

n − 1
EX(X ′X).

These results quickly yield the following expectations

E(Σ̂) =
n − 1

n
Σ +

n − 1

n
ZΓ′VxΓZ ′,

E(Σ̂fit) =
r(X)

n
Σ +

n − 1

n
ZΓ′VxΓZ ′,

E(Σ̂res) =
n − 1 − r(X)

n
Σ.

In particular, with Σ = Z0Ω
2
0Z

′
0 + ZΩ2Z ′, Cook’s Proposition 4 says that the estimates

converge in probability to the limits of their expected values.

Cook’s second simulation has a true model with d = 1, n = 250, q = 10 (his p), p = 1,

Γ = 1, Ω = σ, Ω0 = σ0I9, and Vx = σ2
x (his σ2

Y ). Here,

E(Σ̂) =
n − 1

n
σ2

0Z0Z
′
0 +

n − 1

n
(σ2 + σ2

x)ZZ ′,

E(Σ̂fit) =
r(X)

n
σ2

0Z0Z
′
0 +

(

r(X)

n
σ2 +

n − 1

n
σ2

x

)

ZZ ′,

E(Σ̂res) =
n − 1 − r(X)

n
σ2

0Z0Z
′
0 +

n − 1 − r(X)

n
σ2ZZ ′.

Cook’s simulation results make good sense in terms of these expected values. Terms involving

r(X)/n should be unimportant. When σ0 is small, E(Σ̂) is dominated by (σ2 +σ2
x)ZZ ′ which

is larger than the corresponding terms σ2
xZZ ′ and σ2ZZ ′ for Σ̂fit and Σ̂res, respectively, so

it works best. When σ0 is comparable to σ and σx, Σ̂fit works well, because E(Σ̂fit) is much

less affected by σ2
0 than the other estimates. And when σ0 is large, Σ̂res works well because

then we need to look at the eigenvectors for small eigenvalues of Σ̂res and Σ̂, but the term
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σ2ZZ ′ for Σ̂res is smaller than the term (σ2 + σ2
x)ZZ ′ for Σ̂, whereas the expected value

of Σ̂fit is relatively unaffected by σ2
0 getting large. As Cook mentions, when σ2

x + σ2 = σ2
0 ,

there is very little ability for Σ̂ to identify C(Z) because then E(Σ̂) = (n − 1)σ2
0/n Iq, so we

cannot really expect the eigenvectors of Σ̂ to help us identify C(Z). Similarly, when σ2 = σ2
0 ,

E(Σ̂res) = (n − 1 − r(X))σ2
0/n Iq.

The expectations of the estimates also show that there should almost always be some

ability to estimate C(Z), cf. Cook’s section 7. In particular,

E

[

n

r(X)
Σ̂fit −

n

n − 1
Σ̂

]

=
n − 1 − r(X)

r(X)
ZΓ′VxΓZ ′,

so the first d principal component vectors of the estimate n
r(X)

Σ̂fit − n
n−1

Σ̂ should be at least

a reasonable estimate of a basis for C(Γ). For large samples this is similar to looking at

the directions determined by Σ̂fit but in the extreme case of C(X) = C(Jn)⊥, the estimator

is degenerate at 0. Of course, according to Cook’s Proposition 7, for general Σ (Cook’s

σ2∆), it no longer suffices to estimate C(Z), we need to estimate C(Σ−1Z). Fortunately,

Σ̂res provides an estimate of Σ, so we can just transform the estimated basis for C(Γ). For

large n, it makes sense to base estimation of C(Γ) on Σ̂fit, but rather than transforming its

eigenvectors, one could alternatively look directly at the eigenvectors of Σ̂−1
resΣ̂fit, which is

Cook’s recommendation when p = d. This intuitive approach based on the expected values

of (matrix) quadratic forms seems analogous to using Henderson’s method three for estimat-

ing variance components, whereas Cook is recommending a maximum likelihood procedure,

which I suspect is better.

I found Cook’s discussion of standardization in Section 7.3 disturbing. I am not dogmatic

about the need to standardize variables prior to finding principal components. When the

measurements are all on similar scales, using the original scales seems reasonable to me, as

when measuring the height, length, and width of turtle shells in centimeters. On the other

hand, if I measure length in kilometers and height and width in millimeters, the first principal

component will essentially ignore the lengths, regardless of any role that length might play
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in prediction. I suspect that the point of Cook’s discussion is that in a situation where you

need to standardize the variables, there will be little reason to suppose that his models (2)

or (5) are appropriate, which means there is little reason to use principal components.

As I indicated at the beginning of my discussion, my biggest problem with these pro-

cedures is that I do not have a good feel for when the various models will be appropriate.

Multivariate linear model theory should allow us to use Σ̂res to test the assumption of

Cook’s models (2) and (5) that Σ = σ2I. I am less sure if it will provide a test of whether

Σ = σ2ZZ ′ + σ2
0Z0Z

′
0, when Z is unknown, but a generalized likelihood ratio test seems

plausible. In any case, the procedures in Section 7.2 seem generally applicable.

REFERENCES

Christensen, Ronald (2001). Advanced Linear Modeling, Second Edition. Springer, New

York.

Christensen, Ronald (2002). Plane Answers to Complex Questions: The Theory of Linear

Models, Third Edition. Springer, New York.

13


