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I wish to comment on some geometric aspects of Friedman and Wall (2005). The article has

an interesting, and I think unusual, way of looking at suppression and collinearity. In a model

y = β0 + β1xi1 + β2xi2 + εi, i = 1, . . . , n we can think of working in n dimensional space with four

key vectors, Y = (y1, . . . , yn)′, X1 and X2 with Xj = (x1j , . . . , xnj)′, and J = (1, . . . , 1)′. The key

geometrical idea in fitting the model is that the predicted values from the least squares fit are the

values in the vector Ŷ which is the perpendicular projection of Y onto the space spanned by J , X1,

and X2. The inner product between two vectors, say Y and X1, is simply Y ′X1. The length of a

vector is ‖Y ‖ ≡ √
Y ′Y . Moreover, if θ is the angle between the two vectors, Y ′X1 = ‖Y ‖ ‖X1‖ cos(θ),

so the inner product is 0 when θ is 90 degrees, it is positive when θ is less than 90 degrees, and it is

negative when θ is greater than 90.

Friedman and Wall are interested in correlations. The sample correlation between, say, y and

x1 is denoted ry1 and it is simply the inner product between Y and X1 after adjusting both vectors

so that they (a) have length one and (b) are orthogonal to J . Making everything orthogonal to J

simply reduces the dimension of the space from n to n − 1, so henceforth we will assume that Y ,

X1, and X2 have already been orthogonalized to J and we are working in the n − 1 dimensional

space. In particular, making a vector orthogonal to J turns it into a mean adjusted vector, for

example, Y becomes (y1 − ȳ·, . . . , yn − ȳ·)′. Another way to think about the correlation is that it is

the cosine of the angle between the mean adjusted vectors. To find the partial correlation between

y and x1, say ry1·2, referred to as a standardized regression coefficient in Friedman and Wall, simply

find the correlation between Y and X1 after orthogonalizing them both to X2. Because most of us

have trouble visualizing spaces with more than three dimensions, I will focus on three-dimensional
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concepts.

Figure 1 gives a simple geometric illustration of classical suppression in two dimensions. The

vectors in question are
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(Formally, these are three-dimensional representations of four-dimensional vectors that have been

mean adjusted.) R2 is the squared length of Ŷ divided by the squared length of Y . The correlations

ry1, ry2, and r12, are just the inner products between the corresponding vectors after adjusting them

to have length 1. To get these three-dimensional vectors into a two-dimensional figure, note that

the inner product between Y and Xj is identical to the inner product between Ŷ and Xj and that

none of Ŷ , X1, and X2 have a nonzero component in the third direction. Therefore, in Figure 1 we

plot only the first two directions of each vector. Note also that ry1 > ry2 = 0 because δ > 0. In

the figure, ry1 is close to 0 and r12 is close to 1. ry1 gets larger and r12 gets closer to 0 as δ gets

larger and ry1 becomes negative if δ is negative. (The same things would happen as δ changes if

X1 = (δ, −1, 0)′ except that r12 < 0.)

One way to examine collinearity is to let δ, and thus X1, change. Various models that have the

same space spanned by X1 and X2 are equivalent in many ways. In particular, they have the same

value of Ŷ and R2. As δ /= 0 changes in Figure 1, the space spanned by X1 and X2 remains the

same so Ŷ and R2 remain the same. Moreover, we could even change X2 to be X2 = (1, η, 0)′ and

nothing important would change in the figure as long as η /= δ. With η small but nonzero, we have

ry2 small but nonzero with the same sign as η.

The odd thing about Figure 1 is that when ε is small, so that Y and Ŷ are very nearly the same,

we have R2 very close to 1 but ry1 and ry2 both very close to 0. That is because, even though X1 and

X2 are nearly the same vector, the space spanned by the pair of them is much larger and includes

vectors very close to Y , namely Ŷ . I think the real issue is whether you can rely on X1 and X2
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Figure 1: Vectors illustrating classical suppression.

to produce reasonable predictions under the kind of collinearity displayed in Figure 1. Christensen

(2002, Sec. 14.4) discussed what can happen if X1 and X2 contain small errors.

Rather than keeping the space spanned by X1 and X2 fixed, Friedman and Wall look at what

happens to r12 and R2 when you keep ry1 and ry2 fixed. As they did, I assume ry1 > ry2 ≥ 0.

The set of all X2 vectors that have ry2 fixed, will be a cone centered around the line determined by

multiples of Y . For ry2 = 0 the cone degenerates to the plane through the origin that is orthogonal

to Y . Similarly, having ry1 fixed determines another cone, closer to the center line than the first.

Imagine taking the vector Y and either a vector X1 or X2, say X1, from its cone. The X2 vectors

that maximize (minimize) r12 are the vectors in the X2 cone that are closest to (farthest from) X1

in terms of the angle between them. It is easy to see how to find them geometrically. Everything

is symmetric about Y so use the two vectors (lines) Y and X1 to determine a plane. This plane

intersects the X2 cone in two lines. The line that is closer to X1 contains the vectors in the X2 cone

that maximize r12. The line that is farther from X1, minimizes r12. (In more than three dimensions,

the lines become (hyper)planes.) Conversely, if we take X1 along with an X2 that maximizes or

minimizes r12, the plane determined by them will contain Y , so R2 = 1.

You can also see how to minimize R2 geometrically. An alternative way of thinking about the
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previous paragraph is that to find X2 that minimizes r12 and maximizes R2, think of starting at

the tip of the X1 vector, traveling straight into the Y line, and continuing on to the X2 cone. To

minimize R2, start at X1, travel to the Y line but turn 90 degrees before going on to hit the X2

cone. More formally, find the (hyper)plane orthogonal to Y and X1, expand that to a (hyper)plane

that also includes Y , and take X2 to be a vector in the intersection of this expanded hyperplane and

the X2 cone.

Although I am still open to being convinced to the contrary, at the moment I think that to

examine the effect of collinearity, the paradigm based on varying X1 and X2 (ignoring Y ) while

keeping fixed the space spanned by X1 and X2 is preferable to the paradigm based on varying X1

and X2 while fixing ry1 and ry2 (and implicitly Y ). Both are, in some sense, artificial because in

reality nothing (or everything) is fixed.

My personal preference in evaluating collinearity is to examine how the space spanned by the

mean adjusted versions of X1 and X2 changes when they are subject to small errors. In Figure 1,

the X1, X2 space is the plane determined by (1, 0, 0)′ and (0, 1, 0)′. When subjected to small errors,

the X1, X2 space would be a plane determined by one vector that will be very close to (1,0,0) and

another vector that could be virtually anything depending on the exact nature of the errors. When

the predictors are subject to small errors, the only reliable direction for fitting is a single predictor

variable similar to either X1 or X2. In Figure 1, if we use only one predictor vector that is similar

to X1 and X2, we will get an R2 that is similar to r2
y1 and r2

y2, both of which are near zero. The

fact that the two-predictor variable model has a very high R2 is because the “small errors” have

happened to determine a two-dimensional plane that is very close to the Y vector, even though

neither X1 nor X2 is close to Y . The issue is whether we can believe in our good luck that this

happened. Is the good fit of the two variable regression model just a chance occurrence based on the

exact nature of the small errors that occurred in X1 and X2 or could it be real and reproducible?

Short of collecting more data, I know of no way to make such a determination. Nonetheless, it should

come as no surprise if the good fit turns out not to be reproducible. More generally, such problems
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are handled very well by principal component regression in which directions corresponding to small

eigenvalues are directions that may be unreliable due to small errors in the predictor variables.

Principal component regression can also be used to provide—perhaps more reliable—estimates of

the regression coefficients on the original variables, see, for example, Christensen (1996, sec. 15.6).

Personally, I tend to focus on the predictive aspects of linear models and avoid the difficult task

of interpreting regression coefficients. In large part I do this because I think it is a short road

from interpreting regression coefficients to making the mistake of treating the fitted model as a

description of some causal relationship, rather than as simply a description of the data that were

collected. Moreover, any predictive ability of the model depends on collecting future data in a

manner similar to that used with the analyzed data.

Ronald Christensen

University of New Mexico
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