
Clustering and Summarization
of Large Document Sets

Undergraduate Thesis

Andrew Hollis

May, 2018



Abstract

The intelligence community is awash in large quantities of data, and
much of this data is text data. The need for tools that can help an-
alysts quickly separate useful texts from less useful texts is becoming
ever more critical. The goal of this paper is to explore a variety of
clustering and summarization algorithms that can be used together to
create systems that allow analysts to quickly get an idea of the major
groups in a document collection and the issues discussed within these
document groups. In order to evaluate the effectiveness of these algo-
rithms we compare their performance to clustering and summarization
results generated by human analysts.

1 Introduction

As our ability to collect and store data has increased in the digital age, the
problem across many sectors of society has become how to make sense of the
large quantities of data now available. One area of modern society where this
need is particularly critical is in the national security intelligence community.

In order to effectively identify the threats facing our nation, intelligence
officers have to be able to process large quantities of data quickly. They must
have tools that allow them solve the ”needle in the haystack” problem, the
problem of finding the relevant information quickly when it is hidden in vast
troves of data. Many statistical and machine learning techniques can be used
in building these tools for intelligence officers. [5]

One of the most common forms data takes in the intelligence community
is that of text. Thus, creating tools that can help intelligence officers find
relevant textual information within a large set of text documents is of criti-
cal importance. Creating systems that give analysts a sense of what is in a
document collection can reduce the amount of time an analyst must spend
evaluating information and can improve an analysts ability to find critical in-
formation more efficiently.

With this motivation in mind, this thesis attempts to explore various text
clustering and text summarization algorithms that can be used to create a sys-
tem for making the process of analyzing sets of text documents more efficient.

In section 2, we explore how to represent text in vector formats that fa-
cilitate analysis and discuss how dimensionality reduction may improve the

1



clustering analysis. In section 3, we discuss three different text clustering al-
gorithms and associated internal clustering evaluation metrics. In sectin 4, we
discuss three multi-document summarization techniques that can be used to
give analysts an overview of each text cluster. In section 5, we compare the
results of automatic clustering and summarization with clustering and sum-
marization performed by human analysts in order to determine if our system
could mimic low-level human analysis and thus free up analysts to do more
critical high-level analysis. In section 6, we briefly discuss a framework that
uses the clustering and summarization techniques to create a system for inter-
actively exploring the contents of a document set. In section 7, we end with
some concluding remarks and possible direction for future research.

2 Data Cleaning and Transformation

2.1 The Data Set

In order to demonstrate and evaluate the use of the clustering and summariza-
tion algorithms we are using a declassified collection of texts from the Central
Intelligence Agency that document the Soviet Invasion of Czechoslovakia in
October 1968. The corpus contains 475 documents of various types. Some
are short bulletins describing single events, some are longer analytical reports,
others are raw transcripts from meetings or speeches. The documents also
vary greatly in length. This is useful as it will allow us to observe how the
clustering and summarization algorithms behave on a corpus containing many
types of documents.

These documents were taken from the Internet Archive which has the doc-
uments available in text file format, which is the easiest format for reading in
the text data and processing it.

2.2 Text Vectorization: The Bag of Words Model

In any clustering task, it is important to extract features from the data that
can be used to judge the similarity between two objects. Most clustering al-
gorithms will use these features to determine which data objects, in this case
texts, should be in the same cluster. Good feature selection is critical for ac-
curate clustering. [1]

2



One of the simplest and most popular methods for feature selection in text
analytics is to use the bag of words model along with a feature selection metric.
[21] The bag of words model breaks down a piece of text into its constituent
words, thus creating a set or “bag” of words from the text. The principle
disadvantage of this method is that we lose information about word order
which is often very important to the overall meaning of the text. We have also
lost information about potentially important multi-word combinations such
as “United States” or “Soviet Union”. These concepts are not presented as
single data units in the bag of words model. Despite these disadvantages, the
method is very simple and is used in many applications.

Once the text has been transformed into a bag of words, we transform this
bag of words into an n−dimensional feature vector representation of the text.
Let X be the bag of words model, and let fi be some function that calculates
the ith feature from the data, X. We seek to transform the data into a vector
of the form [f1(X), f2(X), ..., fN(X)].

One very simple choice for the feature functions is term frequency. We
create a vocabulary of n terms from the data and then we define fi(X) :=
freq(ti), where freq(ti) is the number of times ti, the ith term in the selected
vocabulary, appears in the text. Figure 1 illustrates the idea behind this
approach.

Figure 1: Bag of Words-Term Frequency Model

In this case the vocabulary was the total set of unique words in the quota-
tion. Notice that the vocabulary is not a as long as the total number of words
in the quotation, which is 16. It is 12, because certain words are repeated.
This can be seen in the feature vector, which shows that the first word in the
vocabulary, “in”, and the second word in the vocabulary, “theory” both have
a frequency of two.

3



Keep in mind that the goal of a feature is to help the clustering algorithms
discriminate between data objects. For feature functions like the one above
that correspond to words, the goal is often to assign weights to words from
the text in accordance with their “importance” in the text and their ability to
differentiate the text from which they originate from other texts. [20] On first
inspection, it may appear that the term frequency approach seems to meet this
criterion. For instance, if you have some documents that talk about economics
and some documents that talk about cybersecurity, terms like “supply”, “de-
mand”, or “production” will probably have high term frequency among the
economics documents and low frequency among cybersecurity documents. In
this case, term frequency would be useful for clustering the two types of doc-
uments.

2.3 Data Cleaning

Although raw term frequency is a good start, there are several ways in which
the feature selection can be improved upon. To begin with, it is common
practice to remove words that are common to all documents; these are usually
referred to as stop words. [1]. Such a list of stop words might include “the”,
“and”, etc. Because these words appear many times in every document, they
do not help discriminate between documents, they are just “noise”. Thus, they
are commonly removed before further analysis is performed. For instance, in
the quotation example in figure 1, we might choose to remove “in” or “and”
from the set of features since these word are so common in so many documents.

It is also important to avoid creating features from words that really should
not be considered as separate features. For instance, if a word is misspelled in
the text. We do not want this data anomaly to be treated as a feature used for
discrimination. Thus, it is recommended to have some way of correcting all
words which are deemed to not be correctly spelled words before continuing
with analysis. We use Peter Norvig’s spell checker [17], which is considered
a good base line spelling correction algorithm. The algorithm works by con-
sidering all “words” that have an edit distance of 1 or 2 from the word of
interest. Suppose we are considering the word “werk”. We can edit this word
by deleting a letter, flipping the order of two adjacent letters, replacing one
letter with another letter, or inserting a whole new letter. A word that has an
edit distance of 1 from “werk” would be a word that only involves one of the
above editing techniques. For instance “wrk”, “wrek”, “work”, and “werko”
all have an edit distance of 1 from “werk”. Words that have an edit distance of

4



two from “werk” just involve two of the edits mentioned above. For instance,
“wreck” (transposition and insertion) has an edit distance of 2 from “werk”.
After collecting all “words” that have an edit distance of 1 or 2 from the word
of interest we use a very large English text corpus to determine which of the
generated “words” are actually valid English words; these become our candi-
date spelling corrections. We then use the corpus to calculate the frequency
of each of these candidates; the word with the highest frequency with an edit
distance of 1 is set as the spelling correction for the word of interest. If there
is no valid candidate with an edit distance of 1, the most frequent candidate
with an edit distance of 2 is chosen. If there are no candidates with an edit
distance of 1 or 2, the incorrectly spelled word is left alone and not considered
further in the analysis.

We perform three other data cleaning operations to improve feature se-
lection. When text is read in, all words are transformed to their lower case
equivalents so that words are treated as the same feature whether they begin
with an upper case letter or not. For instance, “war”, “War”, and “WAR”
would all be treated as the same feature. We also perform an operation called
lemmatization which maps different forms of a word into a single form. For
instance, “soldiers” become “soldier”, “invaded” becomes “invade”, and so on.
This makes it so that words that are conceptually the same but of a different
form are treated as being representatives of the same feature. Finally, based
on the content of the texts, we extracted several entities that are made up of
several words and may go by several different names but should be treated as
a single unit. For instance, “Soviet Union” and “USSR” should be treated as
the same entity, and “Soviet Union” should not be broken up into “Soviet”
and “Union”; it should be treated as a single object. Thus, every instance of
“Soviet Union” or “USSR” is treated as a representative of the same feature.
This same thing is done for other known proper entities in the text like “West
Germany” (German Federal Republic), “United Nations”, etc.

With only the relevant words left to be considered as features, we also have
to consider how we will construct a finite vocabulary that can be applied to
all documents in the corpus. In order to do this we chose to extract vocabu-
lary from all central intelligence bulletins, weekly summaries, and intelligence
memorandums. This vocabulary covered at least 75% of every document in
the corpus. About 87% of the documents are more than 90% covered by the
vocabulary. Only about 3% of all documents are less than 85% covered by
the vocabulary. Overall, this is good coverage. We use a limited vocabulary
instead of a vocabulary built from all the documents for data quality reasons.

5



The original intelligence documents were put through an optical character
recognition (OCR) system in order to transform them into text files from
which data can be easily extracted. The central intelligence bulletins, weekly
summaries, and intelligence memorandums had the clearest OCR rendering
and thus were less susceptible to misspellings or illegibility due to bad OCR
rendering. The cleaner vocabulary built from the central intelligence bulletins,
weekly summaries, and intelligence memorandums can be used to help recog-
nize incorrectly rendered words in the other documents and correct them. If
we used all the documents, the badly rendered words in the other documents
would be included in the vocabulary and would never be corrected.

2.4 The Term Frequency Inverse Document Frequency
(TFIDF) Transform

Once the data has been properly pre-processed, we can calculate feature scores
and turn the text into vector form. The question then becomes: what is a good
feature score? As mentioned previously, a very simple feature score would just
be term frequency, but this method has certain inadequacies.

There are two major considerations to keep in mind when constructing a
good feature score for text analytics applications. [20] These two considera-
tions are recall and precision. Recall refers to the ability of a feature score to
find relevant features or words. If a word is of particular relevance or impor-
tance in a document it should appear many times. Thus, term-frequency is
a good metric for recall. The other consideration, precision, has to do with
a feature score’s ability to lessen the importance of irrelevant features in the
analysis. Term frequency by itself is not a very good metric for precision [20].

To better understand this, consider the data set used in our study. It is
a collection of documents about the Soviet invasion of Czechoslovakia. Thus,
we expect words like “Soviet” and “Czechoslovakia” to show up many times
in every document, but these terms are not helpful in distinguishing one doc-
ument from another since they are quite common to all documents. If we have
a subset of documents referring to the economic costs of the invasion and a
set of documents about the reaction of youths in Prague to the invasion, we
want words like “economy”, “production”, “protests”, “youth”, etc. to have
a higher weight than “Soviet” and “Czechoslovakia” because such words are
useful for distinguishing between documents that talk about the economic sit-
uation and documents that talk about political unrest.

6



A feature score with the recall power of term frequency but better precision
is the term frequency inverse document frequency (tfidf) score. [20] The tfidf
score is calculated as tfidf(t) = tf(t)×idf(t), where tf(t) is the term frequency
of term t in some document and idf(t) is the inverse document frequency of
term t across the whole data set of interest. The idf(t) score is calculated as:

idf(t) = 1 + log

(
C

1 + df(t)

)
(1)

Where C is the total number of documents in the data set, and df(t) is the
the document frequency of t, or number of documents in which the term t is
mentioned. Examining this score we can see that it essentially penalizes words
like “Czechoslovakia” and “Soviet” that appear in many documents and thus
have a high document frequency. Once the feature vectors are computed in
this way, the vectors are typically normalized.

We will illustrate the complete TFIDF feature vector construction process
with a toy example. Consider the following four “document” data set:

Document 1: the sky is blue

Document 2: sky is blue and sky is beautiful

Document 3: the beautiful sky is so blue

Document 4: i love blue cheese

Ignoring stop words like “the” we have a vocabulary of 8 unique words
[sky, is, blue, beautiful, so, i, love, cheese].

The following table shows the feature vector calculation for document 2:
Word TF DF TFIDF
sky 2 3 2
is 2 3 2
blue 1 4 0.7768
beautiful 1 2 1.288
so 0 1 0
i 0 1 0
love 0 1 0
cheese 0 1 0

7



The final document tfidf vector would be normalized so that documents
of very different lengths would still be comparable. Notice that even though
“blue” and “beautiful” appear the same number of times in the document
they have very different weightings because “blue” shows up in all four doc-
uments, thus giving it a higher idf penalty, and “beautiful” only shows up in
two documents. Once this tfidf representation has been calculated for all the
documents, our data will be put in a term-document matrix, the standard
data format for text analytics. The term-document matrix is an n×m matrix
where n is the number of documents and m is the number of words in the
vocabulary. Each of the tfidf feature vectors form the rows of this matrix.

2.5 Dimensionality Reduction: Latent Semantic Index-
ing

There still remains one other way in which to improve the performance of our
clustering algorithms. It is possible to reduce the dimensionality of the data
set in order to bring out some of the more salient features of the data set and
reduce the impact of noisy features. [1] One way of doing this is through a
technique know as latent semantic indexing (LSI). LSI is similar to principal
components methods in that it uses singular value decomposition of the data
matrix to extract the most important features of a data set. LSI was created
to deal with the issues of synonymy and polysemy. [7]

Synonymy refers to the problem that arises when a two texts are treated
as being dissimilar because they don’t have the same words even though they
mean essentially the same thing. For instance the sentence “Julius Caesar
conquered the native tribes that once inhabited modern day England” would
be treated differently from “The Romans invaded and defeated the ancient
Britons.” because there is no word overlap, but the sentences are talking about
the exact same thing and should ideally be treated as very similar. This is a
recall problem because there is a tendency to treat as dissimilar texts that are
actually very similar.

Polysemy is essentially the opposite of synonymy. Polysemy is the prob-
lem that arises when several words overlap, but the texts in question aren’t
actually very similar in meaning. Thus, two texts are treated as being similar
when they actually aren’t. For instance the sentence “The thief escaped into
the London fog after robbing the shop.” is not at all similar in meaning to “I
escaped the shop to pick up a London fog latte.” Because of the great amount

8



of word overlap between these sentences, however, they might be treated as
being very similar. This is a precision problem as it treats two texts as similar,
or relevant to each other, when they are not.

The main lesson here is that word-based features aren’t always the best
feature choice for doing text analysis. The goal of LSI is to make use of higher
order latent structure in the data between terms and documents that might
be used to create better features for more accurate clustering. The goal is to
use information to about term-document relationships in order to impute new
term weights based on semantic similarity. So for instance even though “Julius
Caesar conquered the native tribes that once inhabited modern day England”
does not contain the words “Roman” or “Briton”, a non-zero weight would be
assigned to these terms for that sentence because the sentence has words that
are semantically related to “Roman” and “Briton”.

The way this is done is by performing truncated singular value decompo-
sition on the transposed term-document matrix, X → Tk ∗Sk ∗D′

k, where k is
the rank of the approximate matrix X̂ = Tk∗Sk∗D′

k. k can also be interpreted
as the dimension to which we are reducing the data. Figure 2 is an illustration
of the decomposition:

Figure 2: Truncated SVD of Term-Document Matrix

The orthogonal factors produced by this decomposition can be thought of
as artificial concepts in the document set. The left singular vectors in matrix
T represent the terms of the vocabulary in the abstract concept space, the
right singular vectors in matrix D′ represent the documents in the abstract
concept space. The ijth entry of T , twij, represents the level of association
between the ith term of the vocabulary and the jth abstract concept with
a term weight. Similarly the ijth entry of D′, dwij, represents the level of
association between the ith abstract concept and the jth document with a
document weight. The diagonal singular values, cwi, represent the relative

9



weights of the abstract concepts themselves. [10, 7] Dimension reduction is
performed by selecting the top k components and then deleting the vectors of
the three component matrices that don’t correspond to these top components.

Once this decomposition and dimensionality reduction has been completed,
we can treat the matrix SD′ as the new reduced document matrix. [7]. We can
then perform our analysis on this data matrix instead of the original one. This
reduction is supposed to reduce noise brought on by synonymy and polysemy
and can be particularly useful for enhancing clustering performance. [1] The
main difficulty is in selecting an appropriate k number of components to keep.
It has been shown that anything from 50-400 dimensions can be appropriate
depending on the document set. [10]

3 Document Clustering

We used three clustering algorithms to cluster the documents: K-Means clus-
tering, average-linkage agglomerative clustering, and fractionation partitional
clustering. One of the difficulties of clustering is determining the right number
of clusters into which the document set should be partitioned. We can use a
number of internal clustering evaluation measures to determine the quality
of a particular document clustering. We can use these metrics to determine
which k leads to the best quality clustering configuration.

3.1 A Note on Distance Measures

All clustering algorithms rely on some kind of measure of distance between
the vector representation of the documents. Such a distance measure can
be denoted as Dist(di, dj). One popular measure of distance is Euclidean
distance. For documents with vocab size v, the Euclidean distance is:

Dist(di, dj)euclidean =

√√√√ v∑
k=1

(dik − djk)2 (2)

Another popular measure of distance is the cosine distance measure which
measures the cosine of the angle between the two document vectors in the
feature space, and measure of similarity, and then subtracts this from 1. The
measure ranges from 0 (identical vectors) to 1 (orthogonal vectors). Thus, a

10



higher cosine distance measure indicates greater distance between documents.
The cosine distance for documents with vocabulary size v is calculated as:

Dist(di, dj)cosine = 1−
∑v

k=1 dik ∗ djk√∑v
k=1 d

2
ik

√∑v
k=1 d

2
jk

(3)

3.2 K-Means

The first clustering algorithm that we will examine is the k-means algorithm.
[9]

The k-means algorithm is used to break up a set of objects into k clusters.
The algorithm takes as input K, the number of clusters, and a set, X of M
data objects, each with N features.

The algorithm begins by randomly selected K data objects, these K objects
will form the initial cluster centers. The other documents are then associated
with the cluster whose center is a minimum distance away, using one of the
distance metrics described previously. Once this initial clustering is finished,
the centroids, which are the mean vector of the cluster, are assigned to be the
new cluster centers. For a cluster containing d document with N features, the
centroid is calculated as [

∑d
i=1

xi1

d
,
∑d

i=1
xi2

d
, ...,

∑d
i=1

xiN

d
], where xij is the jth

feature score of the ith document. The algorithm repeats for I iterations. The
time complexity of the algorithm is Θ(NMKI) [9].

Figure 3 gives an illustration of how the k-means clustering algorithm
works. The three large points represent cluster centers and the smaller points,
representing data objects that are assigned to the closest center.

11



Figure 3: Illustration of K-Means Algorithm

3.3 Average-Link Agglomerative Clustering

The next algorithm we wish to discuss is the average-link agglomerative clus-
tering algorithm. This algorithm comes from a family of agglomerative clus-
tering algorithms.[14] The essential idea of an agglomerative algorithm is to
start by treating all data objects as being in their own cluster and then com-
bine the 2 closest clusters (which in this first case are individual objects), the
algorithm proceeds by continuing to combine the two closest clusters until only
the desired K clusters are left. The thing that distinguishes one agglomerative
clustering algorithm from another is the way in which cluster “closeness” is
defined, this cluster “closeness” is called linkage. There are three measures of
cluster linkage: single-linkage, complete-linkage, and average-linkage. Single-
linkage clustering assigns the distance between two clusters to be the distance
between their two closest points. Complete-linkage clustering, on the other
hand, assigns the distance between two clusters to be the distance between
their two most distant points. Average-Linkage clustering attempts to use all
the information from the two clusters and assigns the distance between the
clusters to be the average of the distances between all points in both clusters.

12



Figure 4 illustrates the difference between the different agglomerative clus-
tering algorithms. The illustration is taken from the [14].

Figure 4: Agglomerative Clustering Algorithms

Linkage is based on similarity, which is really just an inverse concept from
distance. An equation for computing the average-linkage between two clusters
is as follows [14]:

AvgLink(ωi, ωj) =
1

(Ni +Nj)(Ni +Nj − 1)

∑
dm∈ωi∪ωj

∑
dn∈ωi∪ωj ,dn 6=dm

Sim(dn, dm)

(4)
Where ωi is the ith cluster, Ni is the size of the ith cluster, dm is the mth

document, and Sim(dm, dn) is a measure of similarity between documents.

The average-link clustering algorithm follows the pattern of an agglomer-
ative algorithm. The total cluster set is initiated as being the set of all doc-
uments. Clusters are then successively merged according to the average-link

13



criterion until the desired number of clusters is attained. The time complexity
of the algorithm is Θ(M2 log(M)). [14]

3.4 The Fractionation Algorithm

The final clustering algorithm that we used on the document set is the frac-
tionation partitional algorithm described in [6]. The fractionation algorithm
works very similarly to k-means except instead of starting with K random
data objects to use as the initial cluster centers, it uses a more sophisticated
deterministic method to select initial cluster centers and then proceeds with
the k-means algorithm.

The algorithm starts by treating the whole document set X as the initial
cluster centers. Then the cluster centers (the documents themselves in the first
iteration) are sorted according to the feature score of a single feature that has
a relatively high feature score across all documents. The set of sorted cluster
centers is partitioned into m “buckets” and the average link agglomerative
algorithm is used to reduce the number of objects in each bucket to p ∗ m
where 0 < p < 1 is some reduction factor. The centroids of these clusters
are calculated and the centroids from all buckets are set to be the new cluster
centers. The algorithm repeats until only K initial cluster centers are left, and
then these initial cluster centers are used in k-means. The time complexity
for finding the clusters is O(mM), where once again M is the number of total
documents in the document set. [6] Figure 5 below shows how the algorithm
works:

14



Figure 5: The Fractionation Algorithm

In figure 5, we have M=16, K=4, m = 4, and p = 0.5. The algorithm
groups documents into buckets of size 4, and then uses an agglomerative al-
gorithm to reduce the number of objects by half until the desired number of
cluster centers is achieved.

3.5 Clustering Evaluation Measures

In order to evaluate the quality of different clustering configurations across
different clustering algorithms and across different choices for K, we use three
measures of clustering clustering quality: the silhouette index, the Calinski-
Harabasz index, and the SD validity index. For both the silhouette and the
Calinski-Harabasz indices, the goal is to maximize the index. For the SD va-
lidity index, the goal is to minimize the index. [13]

All three of these measures are internal clustering validation measures
which means they use only the data and the clustering structure to evalu-
ate the clustering quality. The measure doesn’t have any external standard
to which it compares the clustering to determine quality. This kind of metric
is helpful when approaching a document set that we know nothing about and

15



for which we do not have a “correct” clustering to which we compare the au-
tomatic clustering methods.

A good internal clustering measure considers characteristics of the cluster-
ing configuration, separation and compactness. [13] Separation refers to how
well separated, or how distinct the clusters are. A good clustering of the data
will lead to well-separated clusters. Compactness refers to how tight the clus-
ters are, or how much variation exists within a cluster. A good clustering will
ideally lead to clusters that are grouped tightly around the cluster centroids.

3.5.1 Silhouette Index

We first consider the silhouette index. The way this coefficient is calculated
is detailed in [8]. The index is calculated by calculating a coefficient for each
point in the data set and then averaging over these coefficients to get a single
value for the whole data set. For each point we calculate ai, a measure of
variation within a cluster Ck and bi, a measure of how close the point is to
points in other clusters. The silhouette index for one point in the data set is:

si =
ai − bi

max{ai, bi}
(5)

Letting I be the cluster of the ith data point,xi, and letting nI be the
size of I, and letting dist be a distance function for document pairs, the ai
coefficients are calculated as follows:

ai =
1

nI − 1

∑
x′
i∈I

dist(xi, xi′) (6)

Thus, ai is the mean distance between point xi and all the other points in
xi’s cluster.

To calculate the bi coefficient, we first define the distance between xi and
the other clusters, Ck in the data set:

d(Ck, xi) =
1

nCk

∑
x′
i∈Ck

dist(xi, x
′
i) (7)

Thus, d(Ck, xi) is the mean distance between xi and every point in a dif-
ferent cluster Ck. The bi is simply the minimum of the d(Ck, xi):

16



bi = min
k

(d(Ck, xi)) (8)

Letting M be the total number of documents in the whole document set,
the final index value for the whole clustering configuration is the mean of the
si’s:

s =
1

M

M∑
i=1

si (9)

3.5.2 Calinski-Harabasz Index

The next measure that we use is the Calinski-Harabasz index the details for
this calculation are also in [8]. The index is calculated as:

CH =
BGSS/(K− 1)

WGSS/(M−K)
(10)

In this equation, BGSS is the between groups sums of squares. It is a
measure of separation. It is calculated as follows:

BGSS =
K∑
k=1

nk||Centk − Cent||2 (11)

In this equation nk is the size of cluster k, Centk is the centroid of the kth
cluster and Cent is the centroid of the entire data set.

WGSS is within group sums of squares. It is a measure of compactness. It
is calculated as:

WGSS =
K∑
k=1

∑
xi∈Ck

||xi − Centk||2 (12)

In this equation, Ck is the kth cluster. We can see from the calculations
that the index is a ratio of the separation and compactness of the clustering
multiplied by a penalty term that penalizes clusterings with large K.

3.5.3 SD Index

The final cluster evaluation index we made use of was the SD index:

SD = αS +D (13)

17



S is calculated as follows:

S =
1
K

∑K
k=1 ||Vk||
||V ||

(14)

Let V = [Var(t1),Var(t2), ...,Var(tN)], where Var(ti) is the variance of the
feature score for the ith term across all documents when there are N total
terms in the vocabulary. Let Vk be defined analogously to V except that the
variance of the feature score for each term is taken only across the documents
in cluster k. This is a measure of the average variation with clusters and is
thus a measure of compactness that should be minimized.

D is calculated as:

D =
Dmax

Dmin

K∑
k=1

1∑K
k′=1,k′ 6=k ||Centk − Centk′||

(15)

Dmax = max
k∈{1,...,K}

{||Centk − Centk′||}, Dmin = min
k∈{1,...,K}

{||Centk − Centk′ ||}

(16)
Centk is the centroid of the kth cluster. D is essentially a sum of the

inverses of the distances between each cluster centroid and all other cluster
centroids multiplied by the scaling factor Dmax

Dmin
, thus D is an inverse measure

of separation and should be minimized. The α coefficient is the value of D
when we are considering the maximum value of K of interest to the analysis.
This is meant to prevent D from carrying too much weight in the calculation
of SD.

4 Summarization Algorithms

In this section we discuss three extractive summarization algorithms. An ex-
tractive summarization algorithm summarizes the text by picking out salient
sentences and then pieces these sentences together to form a summary of the
text. We discuss a latent Dirichlet allocation based summarization algorithm,
a graph based algorithm, and a centroid based algorithm.

4.1 Latent Dirichlet Allocation Based Summarization

Latent Dirichlet Allocation (LDA) is generative probabilistic topic model pro-
posed in [3]. The model is called generative because it views documents as

18



being generated by some latent topic structure. The basic idea behind LDA
is that there are some topics that exist extrinsic to the documents, and the
documents can be seen as being generated by some mixture of the topics. The
topics themselves can be viewed as distributions over the words of a fixed
vocabulary. Figure 6 illustrates the generation process.

Figure 6: LDA Document Generation

If there are K topics and V words in the vocabulary, the process of docu-
ment generation begins by drawing a K-long random vector from a Dirichlet
distribution over the K−1 simplex parameterized by α, this will be the distri-
bution of the topics for the document, we denote this K vector as θ. The topics
denoted φ can be seen as K random draws from a Dirichlet distribution over
the V − 1 simplex parameterized by β. A topic assignment Z is then drawn
from a multinomial distribution parameterized by θ, and finally a word W is
generated by drawing a word from a multinomial distribution parameterized
by the Zth topic.

The generation of a whole collection of documents can be summarized by
the following joint distribution with Nj being the number of the words in the
jth document, M being the number of documents, and K being the number
of topics:

19



P (W,Z,φ,θ|α,β) =
K∏
t=1

P (φk|β)×
M∏
j=1

P (θj|α)×
Nj∏
i=1

P (zj,i|θj)P (wj,i|φzj,i)

(17)
We are interested in finding the posterior distribution of φ and θ given the

data W, thus, we are interested in finding P (φ,θ|α,β,W) as this would give
us the information needed to get estimates for the topics and the topic dis-
tributions for each document. This posterior distribution can be found using
Gibbs sampling.

Once we have the topics and topic distributions in hand we can use these
to extract summaries from the document collection using an the algorithm
described in [2]. The algorithm works by calculating the probability of each
sentence in the document collection given a topic for each topic. The condi-
tional probability for a particular sentence Sr from a particular document Dr

is calculated as follows:

P (Sr|φk) =
P (φk|Dr)P (Dr)∑M

j=1 P (φk|Dj) ∗ P (Dj)
×
∑

wi∈Sr
P (wi|φk)

length(Sr)
(18)

All the P (φ|D) and P (w|φ) terms are available to us after performing
Gibbs sampling with the LDA model. We assume that the distribution over
documents is uniform so P (Dr) = 1

M
for all i.

Once we have computed all the conditional probabilities of sentences given
topics, we use a multinomial distribution to sample a topic from all possible
topics. We then select the sentence with the highest probability given the
topic and incorporate it into the summary. We repeat this process until the
summary is of the desired length. If a sentence is selected more than once,
it is not included in the summary more than once, the next most probable
sentence is selected instead.

In order to select an appropriate number of topics K, a variety of LDA
models are fit with different values of K and the K associated with the model
with the greatest log-likelihood is chosen as appropriate K.

20



4.2 Graph-Based Summarization

Graph-based summarization algorithms use graph ranking algorithms like HITS
are PageRank to extract important sentences from a set of documents. [16]
For this project, we used the weighted PageRank algorithm [4] as the graph
ranking algorithm for extracting the sentences.

The PageRank algorithm works by considering each object to be ranked,
such as a webpage or in the case of document summarization, sentences, as
a node in the graph. Connections between objects are established and are
represented as edges between nodes. If the edges are directed, nodes that
proceed a particular node, Vj, are called “in” nodes and are denoted In(Vj),
and nodes that succeed Vj are called “out” nodes and are denoted Out(Vj).
The algorithm works by calculating a score for each node and ranking the
nodes based on this score. The score for each node, using weighted nodes, is
calculated as follows:

PR(Vi) = (1− d) + d ∗
∑

Vj∈In(Vi)

wij
PR(Vj)∑

Vk∈Out(Vj)
wkj

(19)

The d is a damping factor between 0 and 1. Notice that this score is cal-
culated recursively. The algorithm starts with initial scores for each node and
then goes through rounds of recursive calculation until the scores converge
within a particular threshold.

In order to use PageRank to perform text summarization, the sentences of
the text are treated as nodes in a graph and connections are established be-
tween sentences that have words in common. The algorithm is used to rank the
sentences in order of importance and then the top sentences are extracted until
a desired summary length is reached. For this algorithm similarity between
sentences is calculated as the overlap between two sentences normalized by the
lengths of the sentences, these overlap scores are treated as the weights used
in the weighted PageRank algorithm. Thus, the weight for the edge between
two connected sentences, si and sj, is calculated as follows:

wij =
2 ∗ (len(si ∩ sj))
len(si) + len(sj)

(20)

Here len(si) is the legnth of si and len(si ∩ sj) is the number of common
words for sentences si and sj. Just as PageRank identifies the most relevant
webpages for a particular query, the algorithm identifies the sentences that are

21



most relevant for a set of texts. For multi-document summarization, the algo-
rithm is first run on each document individually and the extracted sentences
are combined into a single meta-summary and then the algorithm is run again
on the meta-summary. Experimental results have demonstrated that for the
PageRank algorithm with multi-document summarization an undirected graph
structure performs better than a directed graph. [16] Thus, for this project we
use an undirected version of the algorithm. The undirected algorithm calcu-
lates scores in the same way except that the in-degree and out-degree of each
node is the same. [15] Each undirected edge is replaced by two directed edges
going in opposite directions.

4.3 Centroid-Based Summarization

The final summarization method uses the centroid of each cluster, as well as
some other simple heuristics, to extract the most relevant sentences. [19]
It is particularly suited to summarizing documents in a cluster.

The algorithm works by calculating an initial score for each sentence in
the set of documents in a cluster. The score is a weighted sum of the centroid
score of the sentence, the positional score of the sentence, and the first sentence
overlap score of the sentence. The centroid score of sentence i is the sum of the
centroid values for the words in sentence i. The centroid values for the words
are taken from the cluster centroid described previously as the mean vector of
all document vectors in the cluster. Thus, letting Cwij

be the centroid value
for the jth word of the ith sentence, the centroid score for sentence i, Ci is:

Ci =
∑

wij∈si

Cwij
(21)

The positional value score for the sentence gives higher scores to sentences
that are closer to the beginning of the document they are coming from and
lower scores to sentences that are further from the beginning. The idea behind
this score is that sentences near the beginning of a document will contain
more essential summary information than sentences closer to the end and thus
should be considered more important for summary purposes. Letting n be the
number of sentences in the document containing sentence i and letting Cmax

be the maximum centroid score across sentences in the document containing
sentence i, the position score for sentence i is calculated as follows:

Pi =
n− i+ 1

n
∗ Cmax (22)

22



The final score used to create an initial importance score for each sentence
is the first sentence overlap score. The reasoning behind using this score is
similar to the reasoning behind using the positional score. The idea is that the
first sentence of a document especially when using documents such as news
articles or bulletins, the first sentence often gives a fairly good summary of
the overall document. Thus, sentences that are similar to the first sentence,
that is, sentences that have a lot of overlap with the first sentence should be
given a higher score. Letting len(si) be the length of si and len(si∩ sj) be the
number of common words for sentences si and sj, the first sentence overlap
score for sentence i is:

Fi =
2 ∗ (len(si ∩ sj))
len(si) + len(sj)

∗ Cmax (23)

The overall sentence importance score is calculated as a weighted average
of the three scores described above. Thus, we have the importance score for
sentence i:

SCORE(si) = wC ∗ Ci + wP ∗ Pi + wF ∗ Fi (24)

In order to help prevent information from being repeated in the summary,
we also introduce a redundancy score for each sentence. After the sentences
have been sorted by their initial importance score, we extract the sentences to
create a summary. We then calculate the redundancy score for each sentence,
subtract it from the original importance score, and then resort. This process
is repeated until the sentences making up the summary don’t change. We let
SUM be the set of sentences in the summary at a given time and we let S
be the set of all sentences in the cluster being summarized. The redundancy
score for sentence i is:

Ri = max
sj∈SUM

(
2 ∗ (len(si ∩ sj))
len(si) + len(sj)

)
∗max

sk∈S
(SCORE(sk)) (25)

Once the sentences selected for the summary stabilizes with respect to the
redundancy metric, we take the sentences as our final summary.

5 Comparison with Human Analysis

In this section we wish to compare the performance of the clustering and sum-
marization algorithms described with clustering and summarization performed
by humans. We compare the human and automatic performance on two differ-
ent subsets of the original text data. One subset is a set of 25 documents that

23



were intentionally picked so that each document was similar to some other
documents and different from all the other documents in the subset. This was
done to create a document set that actually has some reasonably well-defined
clusters. The other data set is composed of 25 randomly drawn documents.
This represents a very noisy data set that may not have a very clearly defined
cluster structure. Throughout the rest of the report we will refer to the docu-
ment set with intentionally picked documents as the well-defined data set, and
we will refer to the document set with randomly selected documents as the
random set. Figure 7 shows the 2-D projection of these two document sets as
they were clustered by the human analysts. Colors and shapes represent the
cluster a document was assigned to by a human analyst. Even at this very
low dimension (the original dimension was 5078) the analyst seems to have
found a more reasonable structure in the well-defined document set then in
the random document set.

Figure 7: 2-D Projection of Test Document Sets

5.1 External Clustering Measure

To evaluate the quality of the clustering compared with the clustering done by
human analysts we use an external clustering metric called the RAND index
[14]. The metric is called external as opposed to internal because instead of
using the data and the clustering structure to assess quality, it uses another
clustering configuration as a reference by which to judge quality. The RAND
index essentially measures the level of agreement between two clustering con-
figurations. It is calculated as follows:

RAND(Clusti, Clustj) =
TP + TN

TP + TN + FP + FN
(26)

24



Clusti refers to the ith clustering configuration. TP, TN, FP, and FN refer
to the number of true positives, true negatives, false positives, and false nega-
tives respectively. A true positive occurs when both clustering configurations
agree that two documents belong in the same cluster; a true negative occurs
when both clustering configurations agree that two documents don’t belong
in the same cluster. A false positive occurs when the two clustering config-
urations disagree about whether two documents belong in the same cluster,
and similarly, a false negative occurs when the two clustering configurations
disagree about whether or not two documents belong in the same cluster. Es-
sentially the RAND index is just the fraction of all pairs of documents in the
document set on which the two clustering configurations had agreement as to
their cluster assignment.

5.2 Summarization Evaluation Metrics

We employ two evaluation metrics to assess the quality of the summaries pro-
duced by the computer as compared to the summaries produced by humans.
The two metrics each measure a different component of summarization quality.
These two components are recall and precision. Recall measures how much of
the information in the human generated reference summary is present in the
automatic summary, and precision measures how much of the information in
the automatic summary is present in the reference summary. An automatic
summary with good recall captures most of the information in the reference
summary and an automatic summary with good precision captures only that
information that is in the reference summary and not information that is not
present in the reference summary.

A very simple metric for measuring recall is the ROGUE(Recall-Oriented
Understudy for Gisting Evaluation)-1 metric [11]. It is calculated as follows:

ROGUE − 1(AutoSum,HumSum) =
len(AutoSum ∩HumSum)

len(HumSum)
(27)

Thus, the ROGUE-1 metric measures the proportion of overlapping words
between the automatic and reference summary and the total number of words
in the reference summary.

A simple metric for measuring precision is found in [18]. It is very similar
to the ROGUE-1 metric except we divide by the number of words in the
automatic summary:

25



Precision(AutoSum,HumSum) =
len(AutoSum ∩HumSum)

len(AutoSum)
(28)

5.3 Comparison of Automatic Clustering with Human
Clustering

For each of the two document sets, well-defined and random, we will use inter-
nal cluster validation to find the optimal number of clusters and to determine
if LSI improves the performance, we then compare the performance of the
three algorithms to the human clustering using the RAND index.

5.3.1 Well-Defined Document Set

The initial clustering results for the three algorithms with the well-defined
data set are presented in figure 8:

Figure 8: Initial Clustering Results for Well Defined Document Set

The figure on the right shows the silhouette of each clustering algorithm for
different values of k, the left plot is similar, but it uses the SD score. We would
have used the Calinski-Harabasz index since this is already implemented in
Python. This index, however,puts a heavy penalty on clustering configurations
with more clusters and is sometimes not ideal for determining the ideal k. It
is common to prefer a smaller number of clusters, so we chose the number of
clusters where the peak of the silhouette metric begins. The SD metric would
seem to suggest going with the maximum number of clusters possible, but
again we would prefer to go with fewer clusters. A good number of clusters
seems to be 6 according to the silhouette metric. We also perform LSI analysis.
We look at projections between 2 and 25. The results are in figure 9:

26



Figure 9: LSI Results for Well Defined Document Set

The plots on the right give the silhouette coefficients; the plots on the
right give the Calinski-Harabasz coefficients. All of the plots for each of the
algorithms tend to suggest that a projection of dimension 6 would be best as
this is the point where the silhouette and Calinski-Harabasz indices seem to
be maximized.

After this projection, we run the clustering algorithms again to see if they
recommend a different number of clusters. These results are presented in figure

27



Algorithm RAND Score
KMeans 0.806666
Agglomerative 0.806666
Fractionation 0.806666
Random 0.64313

Table 1: RAND Scores for Clustering with Well-Defined Document Set

10:

Figure 10: Final Clustering Results for Well Defined Document Set

Again a clustering number of 6 seems to be a good choice according to the
silhouette metric.

We can now compare these results against the human clustering results
using the RAND index described previously. The human clustering found
4 clusters for this data as opposed to the 6 clusters chosen for the automatic
algorithm. We also performed random clustering in which the documents were
assigned to 6 clusters randomly. This was used as a benchmark against which
to compare the other automatic algorithms. The RAND agreement scores are
presented in the table 1 below:

As can be seen from the table, the automatic clustering algorithms perform
quite a bit better than the random algorithms for the well-defined data set.
I ran the random algorithm 100 times and then created a histogram of the
RAND scores for each of these runs and compared these scores with the best
automatic clustering score. Figure 11 displays the histogram with the vertical
line representing the best automatic clustering score. As can be seen from
the figure, the automatic clustering score is significantly better than all the

28



random clustering scores.

Figure 11: Histogram of Random Clustering Results for Well-Defined Docu-
ment Set

5.3.2 Random Document Set

The initial clustering results for the random document set are displayed in
figure 12:

Figure 12: Initial Clustering Results for Random Document Set

29



Again there is disagreement between the silhouette and SD indices. We will
once again, go with the metric that recommends fewer clusters. We determine
that 8 clusters seems appropriate by the silhouette metric.

We again perform LSI analysis to determine if any dimension reduction
would be useful. The results are presented in figure 13:

Figure 13: LSI Results for Random Document Set

All the plots suggest that an LSI dimension of 8 would lead to some im-
provement. Using 8 dimensional data, we redo the clustering analysis with the
automatic algorithms to see if a new optimal number of clusters is suggested.

30



The results are shown in figure 14:

Figure 14: Final Clustering Results for Random Document Set

The silhouette index again suggests the smaller number of clusters, and so
by the silhouette index, we determine the best number of clusters to be 7.

As with the well-defined document set, we compare the three automatic
algorithms and a random benchmark algorithm with the RAND index. The
results are in the table 2 below:

Algorithm RAND Score
KMeans 0.746666
Agglomerative 0.72
Fractionation 0.72
Random 0.7143

Table 2: RAND Scores for Clustering with Random Document Set

The results show that the automatic clustering algorithms did quite a bit
worse when no strong clustering structure is actually present in the data. This
is expected. We also see that for the random document set, the automatic
algorithms don’t do much better than the random benchmark. We produced
a histogram of the scores for 100 random clusterings to compare with the best
automatic score. The histogram is in figure 15:

31



Figure 15: Histogram of Random Clustering Results for Random Document
Set

As can be seen from the figure, the automatic clustering algorithms don’t
do much better than the random clustering algorithms and very occasionally
did a bit worse than the random clustering algorithm when no clear clustering
structure is present in the data.

5.4 Comparison of Automatic Summarization with Hu-
man Summarization

For the well-defined and the the random document set, we had the human
analysts construct two summaries. One summary is abstractive, meaning the
analyst summarized the contents of each cluster in their own words, and one
summary is extractive, meaning the analyst extracted the sentences from the
documents in the cluster that he or she felt best captured the contents of the
cluster. The extractive summaries are constructed in a similar way to how the
automatic summary algorithms construct summaries. For each cluster in each
document set, we calculated the ROGUE-1 and precision scores between both
the extractive and abstractive human summaries and the automatic summary.
We then took the average of the precision and ROGUE-1 scores to create a final

32



overall score for how the automatic summary compared to each human cre-
ated summary. A higher overall score indicates an algorithm whose automatic
output was closer to the corresponding human summary. As a benchmark for
the summarization algorithms’ performance, we created a random summariza-
tion algorithm that works by randomly selecting sentences from the cluster of
documents until the desired summary length is reached. The ROGUE-1 and
precision scores for this algorithm and the human summaries is also calculated
for comparison.

5.4.1 Well-Defined Document Set

Figure 16 displays two plots summarizing how the three summarization algo-
rithms and the random algorithm compared with the human extractive and
abstractive summaries.

Figure 16: Performance of Automatic Summarization Algorithms for the Well-
Defined Document Set

Each point represents the overal score for the summary of one of the 4 clus-
ters with a particular summarization algorithm, different algorithm are repre-
sented with different color. The figures show that the random summarziation
algorithm produces summaries with greater similarity to the human summary
than each automatic summarization algorithm several times. We also note
that the scores for all summarization algorithms are higher in when compar-
ing with the extractive human algorithm. This doesn’t necessarily mean that
the algorithms actually do a lot better when compared with an extractive hu-
man summary because the random algorithm also does much better. This
jump in scores is due mostly to the fact that the vocabulary of the extractive
human summary will be more similar to the extractive automatic algorithms

33



than the vocabulary of the abstractive human algorithms that don’t necessar-
ily use the same terminology and style as the documents being summarized.

In order to get a better idea of which algorithms performed best and
whether the algorithms actually do better in the extractive case, for each
automatic algorithm, we calculate the mean difference between the random
summarization score and the automatic summarization score for each cluster.
To get an indication of the performance of the algorithms when compared
with the extractive v.s. the abstractive human summary, we look at the mean
of the mean difference over the three different algorithms. These results are
shown in the table 3 below:

Algorithm Mean Difference
LDA -0.003
Graph 0.0502
Centroid -0.0082
Average 0.0130

Algorithm Mean Difference
LDA 0.0130
Graph 0.0180
Centroid 0.0778
Average 0.03625

Table 3: Summarized performance with Abstractive Human Summary (Left)
and Extractive Human Summary (Right) on Well-Defined Documents.

As can be seen from the above table, the automatic algorithms when com-
pared with the extractive human summary (right table) have a greater average
lead than when compared with the abstractive human summary (left table).
The exception to this trend is the graph algorithm which has a had a greater
mean difference with the random algorithm when compared with the abstrac-
tive human summary. The graph and centroid algorithms both do much better
than the LDA algorithm on average.

5.4.2 Random Document Set

We now perform a similar analysis for the random document set. Figure 17
displays the results for how the output of the algorithms compare with the
human extractive and abstractive algorithms in the same style as above.

34



Figure 17: Performance of Automatic Summarization Algorithms for the Ran-
dom Document Set

The results are similar to the well-defined document set. The random al-
gorithm still beats each of the other algorithms at different points. We present
two tables similar to the ones above to summarize information from the plots:

Algorithm Mean Difference
LDA 0.0148
Graph 0.0010
Centroid -0.0058
Average 0.0033

Algorithm Mean Difference
LDA 0.0323
Graph 0.01980
Centroid 0.0544
Average 0.0355

Table 4: Summarized performance with Abstractive Human Summary (Left)
and Extractive Human Summary (Right) on Random Documents.

Again, the summarization algorithms have a greater lead over the ran-
dom summarzier when comparing to the extractive human summary. This is
most likely because in this case, the human was constrained to choosing sen-
tences only from the document set. There may even be several summaries that
overlap completely between the automatic and human extractive summaries.
This constraint is not present for the abstractive summaries. The information
about which algorithm is better is not as conclusive from this information, for
instance the centroid algorithm performs much better than the random algo-
rithm compared to the extractive summary, but a bit worse than the random
algorithm when compared with the abstractive algorithm. Unlike in the pre-
vious analysis, the LDA algorithm seems to do well when compared to both
summaries.

35



6 Extending Clustering and Summarization to

Large Document Sets

Sometimes for large document sets, a single clustering of the whole document
set may not be necessarily useful. For instance, figure 18 below shows the
behavior of the silhouette and SD metrics when trying to find an appropriate
number of clusters for the entire 475 document set with KMeans.

Figure 18: Number of suggested Clusters with K-Means Algorithm

The silhouette coefficient is highest at 94 clusters, it could go even higher
if we looked at other clustering configurations. The SD coefficient is lowest at
2 clusters or around 92 clusters. None of these clustering configurations would
be particularly useful for the analyst. Having to sort through 2 very large
clusters or 95 smaller clusters is still a big job. We want the analyst to be able
to find a manageable subset of the document set that is interesting to them.
The very large and very small k would also seem to suggest that clustering
may not make sense on such a document set. There may not be a well-defined
clustering structure, which as we have seen can lead to meaningless results
when clustering. Ideally, we would like to combine the clustering and summa-
rization techniques to help an analyst zero in on a small set of documents that
is of particular interest to him or her. One way of combining these operations
was suggested by Cutting et. al [6]. The technique is called scatter-gather.

To begin, an analyst scatters the document set into k clusters, some kind of
summary, known as the cluster digest, is produced for each cluster. For large
clusters, it may be difficult to capture enough of the key concepts with one of
the extractive summarization algorithms detailed above. A better approach
may be to use a keyword extraction method until the cluster size has less than

36



20 documents. Keyword extraction can capture more of the main keywords
of a cluster with less redundancy because the extraction unit is not restricted
to be complete sentences. Once the cluster sizes are smaller, more detailed
extractive summaries can be more useful and can capture a good amount
of the information while remaining reasonably small. Once an analyst has
constructed some set of cluster digests, they can use these digests to determine
which clusters may contain useful information and then gather these clusters
into their own separate subset. The analyst can then repeat this procedure
on the gathered subset. In this way, the analyst can drill down to a subset of
documents that is of particular interest to them. The idea of how the algorithm
works is illustrated in the figure below taken from [6]:

Figure 19: Illustration of Scatter-Gather

The analyst starts with a large set of documents, like all New York Times
articles from August of 1990, and then scatters and gathers the set to sys-
tematically reduce the document set to some manageable and useful subset.

37



The single words that describe potential topics of interest stand in as cluster
digests. Such a method relies on both clustering and summarization together.

7 Conclusions and Future Work

The goal of this report was to explore algorithmic tools for easing the burden
of an intelligence analyst who must make sense of large sets of text documents.
We have explored various clustering and summarization algorithms that when
used in a frame work like scatter-gather can make the processing of text data
more efficient.

We also examined the performance of these methods when compared with
human generated clustering configurations and summaries. We found that
when a document set has some kind of actual clustering structure, the auto-
matic clustering algorithms and human clustering configurations were quite
comparable. When a document set doesn’t have such a structure, the human
and automatic clusterings aren’t as similar.

When comparing the output of the extractive summarization algorithms
to the extractive and abstractive human summaries, the automatic summa-
rization algorithms did not perform very consistently and sometimes had less
similarity with the human summaries than a random set of sentences extracted
from the document. Ideally, the summarization algorithms would consistently
produce results similar to the human summaries. Thus, in future studies it
would be worthwhile to do further study of summarization algorithms.

Some research has been done on automatic abstractive summarization al-
gorithms [12]. This would be an interesting field of study to pursue. It is
also important to note that our algorithms performed inconsistently compared
when compared with one human reference summary using two basic metrics.
It would be worthwhile to explore how the algorithms perform when compared
with multiple human summaries. It could be that while the summarization
algorithm may not produce summaries that are similar to individual human
summaries, when compared with several human summaries, the algorithms
may perform well on average. It is also worth noting that the precision and
recall metrics used are somewhat naive. They base similarity purely on over-
lapping word count. There may be more sophisticated ways of measuring
similarity that may show the automatic summarization algorithms to be more
similar to the human summaries than they appear to be under the simplistic

38



precision and recall measure used.

8 Acknowledgments

I would like to thank my mentor Dr. James Degnan for his support and
guidance and for allowing me to speak to his class about my work. I would also
like to thank the UNM Mathematics and Statistics department for sponsoring
my research. I would like to thank Dr. Monika Nitsche in particular for
organizing the SUnMaRC conference which gave me an excellent opportunity
to present my research to some of my peers. Finally, I would like to thank Mr.
Tucker Berry and Ms. Makenna Johnson for doing the hard work of acting
as the human analysts who produced the human results for me to compare
against the automatic algorithms.

References

[1] Charu C. Aggarwal and ChengXiang Zhai. A Survey of Text Clustering
Algorithms, pages 77–128. Springer US, Boston, MA, 2012.

[2] Rachit Arora and Balaraman Ravindran. Latent dirichlet allocation based
multi-document summarization. In Proceedings of the second workshop on
Analytics for noisy unstructured text data, pages 91–97. ACM, 2008.

[3] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet
allocation. Journal of machine Learning research, 3(Jan):993–1022, 2003.

[4] Sergey Brin and Lawrence Page. The anatomy of a large-scale hyper-
textual web search engine. Computer networks and ISDN systems, 30(1-
7):107–117, 1998.

[5] Randal E Bryant, Jaime G Carbonell, and Tom Mitchell. From data to
knowledge to action: Enabling advanced intelligence and decision-making
for america’s security. Computing Community Consortium, Version, 6,
2010.

[6] Douglass R Cutting, David R Karger, Jan O Pedersen, and John W Tukey.
Scatter/gather: A cluster-based approach to browsing large document
collections. In ACM SIGIR Forum, volume 51, pages 148–159. ACM,
2017.

39



[7] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Lan-
dauer, and Richard Harshman. Indexing by latent semantic analysis.
Journal of the American society for information science, 41(6):391, 1990.

[8] Bernard Desgraupes. Clustering indices. University of Paris Ouest-Lab
ModalX, 1:34, 2013.

[9] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society. Series C
(Applied Statistics), 28(1):100–108, 1979.

[10] Thomas K Landauer, Peter W Foltz, and Darrell Laham. An introduction
to latent semantic analysis. Discourse processes, 25(2-3):259–284, 1998.

[11] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries.
Text Summarization Branches Out, 2004.

[12] Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh, and Noah A
Smith. Toward abstractive summarization using semantic representations.
In Proceedings of the 2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Tech-
nologies, pages 1077–1086, 2015.

[13] Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu.
Understanding of internal clustering validation measures. In Data Mining
(ICDM), 2010 IEEE 10th International Conference on, pages 911–916.
IEEE, 2010.

[14] C.D. Manning, P. Raghavan, and H. Schutze. Introduction to Informa-
tion Retrieval International Student Edition. Cambridge University Press,
2008.

[15] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text.
In Proceedings of the 2004 conference on empirical methods in natural
language processing, 2004.

[16] Rada Mihalcea and Paul Tarau. A language independent algorithm for
single and multiple document summarization. In Companion Volume to
the Proceedings of Conference including Posters/Demos and tutorial ab-
stracts, 2005.

[17] Peter Norvig. Natural language corpus data. Beautiful Data, pages 219–
242, 2009.

40



[18] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a
method for automatic evaluation of machine translation. In Proceedings
of the 40th annual meeting on association for computational linguistics,
pages 311–318. Association for Computational Linguistics, 2002.

[19] Dragomir R Radev, Hongyan Jing, Ma lgorzata Styś, and Daniel Tam.
Centroid-based summarization of multiple documents. Information Pro-
cessing & Management, 40(6):919–938, 2004.

[20] Gerard Salton and Christopher Buckley. Term-weighting approaches
in automatic text retrieval. Information processing & management,
24(5):513–523, 1988.

[21] ChengXiang Zhai and Sean Massung. Retrieval Models, page 88–89. ACM
Books, 2016.

41


