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Summary. We consider hourly readings of concentrations of ozone over Mexico City and pro-
pose a model for spatial as well as temporal interpolation and prediction. The model is based
on a time-varying regression of the observed readings on air temperature. Such a regression
requires interpolated values of temperature at locations and times where readings are not avail-
able.These are obtained from a time-varying spatiotemporal model that is coupled to the model
for the ozone readings.Two location-dependent harmonic components are added to account for
the main periodicities that ozone presents during a given day and that are not explained through
the covariate. The model incorporates spatial covariance structure for the observations and the
parameters that define the harmonic components. Using the dynamic linear model framework,
we show how to compute smoothed means and predictive values for ozone. We illustrate the
methodology on data from September 1997.

Keywords: Bayesian inference; Exponential variogram; Kriging; Markov chain Monte Carlo
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1. Introduction

The study of levels of tropospheric ozone is important for understanding and improving air qual-
ity in major urban areas. Environmental experts and authorities have a special interest in ozone
because of its effect in diminishing health, deteriorating materials and damaging vegetation.
According to environmental standards, pure air should contain less than 1% ozone and exceed-
ingly high levels may cause eye irritation and aggravate respiratory and cardiovascular diseases.

In this paper, we focus on analysing tropospheric ozone for Mexico City, one of the most
polluted cities in the world. Located at the bottom of a valley, with approximately 20 million
inhabitants, Mexico City has maintained high levels of pollution during recent years mainly due
to huge amounts of motor vehicle and industrial activity. In 1986, city authorities recognized
the magnitude of the problem and installed a network of monitoring stations to measure ozone,
carbon monoxide and hydrocarbons. The network is named Red Automática de Monitoreo
Ambiental (RAMA) de la Ciudad de México. Currently, RAMA stations operate 365 days per
year with short periods of interruptions for calibration of the measuring instruments. Each

Address for correspondence: Bruno Sansó, Department of Applied Mathematics and Statistics, Baskin School
of Engineering, University of California, 1156 High Street, Santa Cruz, CA 95064, USA.
E-mail: bruno@ams.ucsc.edu



232 G. Huerta, B. Sansó and J. R. Stroud

station takes measures of pollutants automatically, second by second, and the corresponding
averages per hour are reported to the public. In general, the units of the measurements are parts
per billion (ppb), i.e. the concentration of the substance in a volume, where the volume is divided
into 1 billion parts.

In this paper, we consider the spatiotemporal analysis of ozone time series that were obtained
at some of the stations of the RAMA. As a covariate, we use temperature, which is measured
only at some stations. Our goal is to propose a statistical model that forecasts temporally and
interpolates spatially hourly ozone levels. Although ozone is the variable of interest, the large
amounts of missing values for temperature led us to build a space–time model also for the co-
variate. We elaborate our models within the Bayesian paradigm by using dynamic linear models
(DLMs) as in West and Harrison (1997) to account for temporal non-stationarities in the data.
We use an efficient Markov chain Monte Carlo (MCMC) method to produce forecasts and
spatial maps.

Previous analyses of ground level ozone data for multiple sites, modelled jointly, appear in
Carroll et al. (1997), which used a spatially homogeneous and temporally stationary space–
time model to study ozone exposure in Texas. Their model includes temperature, wind speed
and wind direction as covariables. Also, Guttorp et al. (1994) built a space–time model for
tropospheric ozone via the spatial deformation method of Sampson and Guttorp (1992) and
placed it in a temporal framework by adding a stationary autoregressive process at each site.
As a continuation of this work, Meiring et al. (1998) presented an approach to estimate hourly
grid cell surface ozone concentrations in Northern California based on observations from point
monitoring sites in space for an assessment of a deterministic model. This modelling approach
leads to the estimation of a non-separable space–time correlation structure which is spatially
non-stationary, but it involves a separate estimation of the temporal and spatial parts of the
model. In contrast, there is work that considers multiple sites but modelled separately. For exam-
ple, Rao et al. (1997) and Milanchus et al. (1998) considered an iterative moving average filter
that decomposes ozone into a base-line, trend and a seasonal variation site by site. An extensive
and critical review of different approaches of meteorological adjustment and spatiotemporal
estimation of ozone is given by Thompson et al. (1999). Other approaches to space–time mod-
elling appear in Stroud et al. (2001), Sansó and Guenni (2000), Tonellato (1997), Wikle et al.
(1999), Berliner et al. (1999) and Mardia et al. (1998), among others. More recently, Shaddick
and Wakefield (2002) proposed a multivariate spatiotemporal model of four pollutants mea-
sured daily at eight monitoring sites in London. The approach that is presented in Shaddick
and Wakefield (2002) is similar to ours in that their models are developed within the dynamic
linear modelling framework. However, their models are for daily, not hourly, data and assume
that the effect of the potential covariates is constant in time.

The paper is organized as follows. In Section 2, we describe the data that are under study. In
Section 3, we find the relevant periodicities of the ozone series by using a standard Bayesian
regression tool and we discuss the analyses of the data, site by site. In Section 4, we present our
space–time model for ozone, and a brief description of the Markov chain Monte Carlo (MCMC)
method that is used to fit the model appears in Section 5. We leave the details of the algorithm
for Appendix A. In Section 6, we present the results based on the model, and Section 7 has some
conclusions and extensions of the current model.

2. Description of the data

We consider hourly averages of ozone in parts per billion measured during 1997 at 19 different
monitoring stations scattered irregularly in Mexico City. For 10 of these 19 stations, we also
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Fig. 1. Locations of 19 monitoring stations: �, stations where ozone and temperature are measured; �,
stations where only ozone is measured: , boundary of the metropolitan area of Mexico City

have hourly measurements corresponding to temperature in degrees centigrade. In Fig. 1 we
show the geographical location of the 19 stations over a topographical map of Mexico City.
The scale of the x- and y-axes of the map is in kilometres, with the origin in the main square
of Mexico City, known as the Zócalo. The small box denotes the interpolation region for the
space–time model of Section 5. The large box represents a region centred at Zócalo that contains
the Mexico City metropolitan area. The dotted contour lines correspond to altitude ranging
from 2200 to 2700 m.

Most of the data that we consider for our model appear in Fig. 2. The ozone time series of
11 of the stations, from September 8th to September 14th, 1997, were classified by region and
plotted with the average temperature levels as a tint. The left-hand y-axis scale is for parts per
billion and the right-hand y-axis is for degrees centigrade. In general, we visualize a diurnal
cycle of ozone and a very high peak during the early afternoon hours, between 1 and 4 p.m.
This high peak can be associated with the daily maximum temperature and the motor vehicular
activity in the city during the morning and early afternoon hours. Also, there is a smaller but
frequent nocturnal peak. We do not notice any obvious weekly patterns or week-end effects but
there are changes from one day to the next that suggest that, even after considering daily cycles,
there is a lack of stationarity in the series.
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Fig. 2. Ozone and temperature time series for September 8th–14th, 1997

Fig. 2 illustrates some of the spatial variability of ozone in Mexico City. In fact, a study of the
hourly means over all of 1997 for each of the 19 monitoring stations reveals that the variability
of the mean level across stations is important and that the cyclical behaviour of the series differs
in amplitude according to location.

As is usual for ozone measurements, the distribution of the data has an asymmetric shape
that suggests the use of a transformation before building models based on the assumption of
a normal distribution for the error. The two most common transformations in the literature
for ozone data are the square root and the natural logarithm. Thompson et al. (1999) reported
a summary of the transformations that have been used by different researchers who analysed
ozone series. In this paper, we consider the square-root transformation for the data. This is
supported by analyses of the distribution of the observed values as well as the behaviour of the
residuals of the models that we propose in the following sections.

3. Univariate analysis

An accurate specification of the cyclical behaviour of the ozone series is a key feature for mod-
elling such data. To make inferences on periodicities we used the Bayesian periodogram that
was introduced by Bretthorst (1998). The Bayesian periodogram is defined as the marginal
log-likelihood of the regression model

Yt =a cos.2πt=λ/+b sin.2πt=λ/+ "t ,
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Fig. 3. Bayesian periodogram of concentrations of ozone at 10 monitoring stations in Mexico City during
the first 2 weeks of September 1997

with a non-informative or reference prior p.a, b, σ2/∝1=σ2, where t indexes time, "t ∼N.0, σ2/

and λ is the underlying periodicity or wavelength of the process Yt .
Fig. 3 shows the Bayesian periodograms for the square-root ozone time series for the month

of September 1997 and taken at the monitoring stations that measure temperature. The range
of values for λ shown in Fig. 3 is between 0 and 50 h. The general pattern of all the periodo-
grams is similar with a peak corresponding to a daily cycle with wavelengths of 24 h and a peak
corresponding to a harmonic cycle with a wavelength of 12 h. Some of the stations present a
smaller peak at 8 h. We think that this small peak may be related to early morning reactions
between volatile organic compounds and NOx. We also evaluated the periodograms for values
of λ greater than 50 h and could not find any other relevant peaks. Specifically, we could not
find any cycles that were associated with week-end effects.

Our initial modelling of the data consisted of relating the square-root ozone readings to
the temperature by using a time series model fitted station by station. Many of the model-
ling strategies that were adopted for the spatiotemporal case are the product of the univariate
analysis. Given the apparent non-stationarity of the data, we considered univariate dynamic
regressions. This has as response variable the square root of ozone concentration Yt , the tem-
perature Zt , t =1, . . . , T , and two sine or cosine terms with periodicities 2π=24 and 2π=12 that
are favoured by the Bayesian periodogram.

The model can be written as

Yt =S′
tαt +Ztγt + "t , "t ∼N.0, V/,

αt =αt−1 +ω1t , ω1t ∼N.0, W1t/,
γt =γt−1 +ω2t , ω2t ∼N.0, W2t/
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where S′
t = .cos.πt=12/, sin.πt=12/, cos.πt=6/, sin.πt=6// and α′

t = .α1t , α2t , α3t , α4t/. The par-
ameter γt is a scalar, and "t , ω1t and ω2t are assumed independent of each other. The variance
of "t is unknown but equal for all t, whereas the variance of ω1t and ω2t is modelled with dis-
count factors (see West and Harrison (1997)). We disregard harmonics with higher frequencies
since they do not appear relevant in the periodogram analysis of the data.

The model that was described above is a special case of a DLM as presented in West and
Harrison (1997) and can be fitted by using the well-known updating and filtering equations,
which are related to the Kalman filter. We fitted the model to each of the 10 stations with mea-
surements of temperature. We used a fairly flat initial prior for the parameters at time t =0 and
a global discount factor of 0.97 for the evolution covariances.

We found that this dynamic regression has a reasonable predictive performance, particularly
for 24-h step ahead forecasts. Also, we notice that the estimates for γt are quite variable across
time but relatively less variable across stations. In contrast, the component parameters αt are
quite variable across station and time but, roughly, are such that the corresponding phase is
constant across stations whereas the amplitude varies substantially.

We fitted dynamic models that did not include the two harmonic components, hoping that
the periodicities in the data would be captured by the cyclical behaviour of the temperature, but
the model residuals presented very high autocorrelations or severe non-normality. Similarly, we
observed that the temperature coefficient is significant for most time steps and that dropping
temperature resulted in a severe lack of fit. However, the addition of an 8-h harmonic, which is
hinted by the periodogram, produced no significant improvements in the fit; nor did the addition
of atmospheric pressure or wind as covariates.

We studied the spatial behaviour of the residuals from the station-by-station fits, plotting
the empirical variograms and fitting models with geometric anisotropy that depended on the
direction of the wind. None of the models that we considered produced substantial improve-
ments over the model that consisted of a Gaussian field with isotropic exponentially decaying
covariance.

4. Spatiotemporal model

Let Yit denote the observed square-root ozone concentration, for each station i and time t, and
let Zit be the temperature at time t and station i, t =1, . . . , T , i=1, . . . , n. Let αit denote a four-
dimensional vector of seasonal coefficients for station i corresponding to a seasonal component
S′

t consisting of sine and cosine terms as introduced in the previous section.
The general space–time model that we propose for ozone data is given by

Yit =β
y
t +S′

tαit +Zitγt + "it

where the errors "it are assumed spatially correlated with a Gaussian distribution. Here β
y
t

defines a canonical spatial trend and Zitγt is the effect of the covariate on Yit . Note that the
coefficient that is related to the covariate is assumed to be equal for all stations, whereas each
station has its own set of seasonal parameters. This is justified by the results that were obtained
with the univariate time series analyses. Clearly, this general space–time model has a very large
number of parameters, since at each time t there are four parameters for each station, a common
parameter for the covariate, plus the parameters that define the spatial correlation.

A substantial reduction in the number of parameters is achieved by assuming that the ampli-
tudes of each cyclical component are different, but the phases are very similar between stations
and almost constant in time. This assumption is supported by the univariate models that were
fitted station by station.
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We can thus consider a modification of the model given by

Yit =β
y
t +S′

t .a/αit +Zitγt + "
y
it :

αit = .α1it , α2it/ is now a vector of two dimensions and S′
t .a/= .S1t.a1/, S2t.a2// where

Sjt.aj/= cos.πjt=12/+aj sin.πjt=12/,

j =1, 2, defines the cyclical component in the data and a = .a1, a2/′.
Thus α2

jit.1 + a2
j / is the amplitude of the jth periodicity of the ith station at time t, and

tan−1.aj/ is its phase, which is independent of i and t.
In vector form, our modified space–time model can be written as

Yt =1nβ
y
t +S1t.a1/α1t +S2t.a2/α2t +Ztγt +ε

y
t

where Y′
t = .Y1t , . . . , Ynt/, 1′

n = .1, . . . , 1/, α′
it = .αi1t , αi2t , . . . , αint/, i=1, 2, and ε

y
t = ."

y
1t , "

y
2t ,

. . . , "
y
nt/.

Additionally, we assume that ε
y
t ∼N.0, σ2

yVy/ with Vy = exp.−D=λy/, D is the matrix of
distances in kilometres between stations, exp.D/ denotes the exponentiation of each of its
components and λy is a positive range parameter, i.e. we assume that the errors are normally
distributed with an exponential covariance function.

Furthermore, the parameter evolutions of the model are defined as

β
y
t =β

y
t−1 +ω

y
t , ω

y
t ∼N.0, σ2

yτ
2
y /,

αit =αit−1 +ωαi
t , ωαi

t ∼N.0, σ2
yτ

2
i Wαi /,

γt =γt−1 +ω
γ
t , ω

γ
t ∼N.0, σ2

yτ
2
γ /

where τ2
y , τ2

γ and τ2
i , i = 1, 2, are fixed constants; Wαi = exp.−D=λi/ defines an exponential

covariance function depending on the range parameter λi, i= 1, 2. Therefore, we are incorpo-
rating spatial dependence on the parameters that determine the seasonal terms.

The above model assumes that the observations for temperature are known at each time and
station so it is a model for Yt conditional on Zt . Values of Zit at arbitrary locations and times
are needed to interpolate the values of Yit both temporally and spatially and they may not be
available. Then, we also formulate a spatiotemporal model on Zit defined by

Zit =βz
t +hiηt + .1, 0, 1, 0/δt +εz

it ,

with βz
t a canonical spatial trend on Zit , hi the height of station i, ηt the altitude coefficient at

time t, δt = .δ1t , δ2t , δ3t , δ4t/ and εz
it is the error.

In vector form, the model is

Zt =1nβ
z
t +H′ηt +E′δt +εz

t

where Z′
t = .Z1t , Z2t , . . . , Znt/, 1′

n = .1, 1, . . . , 1/, H = .h1, h2, . . . , hn/, E′ is an .n × 4/-dimen-
sional matrix where all the rows are equal to the vector .1, 0, 1, 0/ and εz

t = .εz
1t , . . . , εz

nt/ is the
vector of errors with εz

t ∼N.0, σ2
z Vz/ where Vz = exp.−D=λz/.

A univariate time series analysis of the temperatures reveals that there are time changing
differences in mean values due to the height of the station. In contrast the seasonality is fairly
homogeneous in space. Therefore, we are considering a model for Zt with the same seasonal
effect for all locations.
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Additionally, the parameter evolutions are defined as

βz
t =βz

t−1 +ωz
t , ωz

t ∼N.0, σ2
zτ

2
z /,

ηt =ηt−1 +ω
η
t , ω

η
t ∼N.0, σ2

zτ
2
η /,

δt =Gδt−1 +ωδ
t , ωδ

t ∼N.0, σ2
zτ

2
δ I/

where τ2
z , τ2

η and τ2
δ are fixed constants, G is a 4 × 4 block diagonal matrix with blocks of the

form

Gj =
(

cos.πj=12/ sin.πj=12/

− sin.πj=12/ cos.πj=12/

)
, j =1, 2,

which defines the seasonal component on Zt and I is a 4×4 identity matrix.
The model is completed by specifying a prior distribution on the range parameters of the

covariance matrix, the scale parameters at the observation level and the phase parameters a. A
particular prior specification is presented in Section 6.

In summary, our new spatiotemporal model for ozone is defined by the two equations

Yt =1nβ
y
t +S1t.a1/α1t +S2t.a2/α2t +Ztγt +ε

y
t ,

Zt =1nβ
z
t +H′ηt +E′δt +εz

t :

This model is in the DLM or state space form notation of West and Harrison (1997). Thus,
conditional on a and all the hyperparameters that define the covariance structure at both obser-
vational and evolution levels, the filtering and recurrence equations of the DLM produce pre-
dictive values and retrospective inferences for the observed data. Formal Bayesian inference
on some of the hyperparameters, e.g. the range parameters λy and λz, leads to the forward
filtering–backward sampling algorithm that we describe now.

5. Markov chain Monte Carlo algorithm and spatial interpolation

Under the space–time model that has just been presented, posterior, predictive and interpolation
analyses are available via MCMC methods. The structure of relevant conditional distributions is
briefly outlined here. Further details appear in Appendix A. First we give some notation. Define
θ

y
t = .β

y
t , α′

1t , α
′
2t , γt/ as the ozone state vector and θz

t = .βz
t , ηt , δ′

t/ as the temperature state vec-
tor at time t, and set θy = .θ

y
0, . . . , θy

T /, θz = .θz
0, . . . , θz

T /. Y = .Y1, . . . , YT / and Z= .Z1, . . . , ZT /.
Let the superscripts ‘o’ and ‘u’ denote the observed and unobserved data respectively. Posterior
inferences are then based on summarizing the joint posterior distribution:

p.Yu, θy, a, σ2
y , λy, Zu, θz, σ2

z , λz|Yo, Zo/:

Our MCMC algorithm is a block sampling scheme in which we iteratively simulate each com-
ponent of the joint posterior distribution. Considering blocks of parameters is a key issue to
obtain convergence and computational efficiency. Related work for Markov random-field mod-
els appears in Rue (2001) and Knorr-Held and Rue (2002). The full conditional distributions
are given below. The prior distributions for the unknown parameters are given in Section 6.

5.1. Sampling the state vectors, error variances and range parameters
Using the state space equations for Yt and Zt , we sample .θy, σ2

y , λy/ and .θz, σz, λz/ as blocks.
Dropping the y- and z-subindices and the conditioning on all other parameters and observa-
tions, we note that
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p.θ, σ2, λ/=p.θ|σ2, λ/ p.σ2|λ/ q.λ/:

We can obtain samples of p.θ|σ2, λ/ by using forward filtering–backward sampling, i.e. we
apply the filtering recurrences for the DLMs defined for the response and the covariate and
then sample each element of θ recursively from t = T , . . . , 1 as in Carter and Kohn (1994) or
Frühwirth-Schnatter (1994). p.σ2|λ/ corresponds to an inverse gamma distribution and p.λ/

can be easily evaluated for each λ. The details appear in Appendix A. We then propose the
following Metropolis–Hastings scheme.

(a) Choose a jumping distribution for λ, say, q.λÅ|λ/.
(b) Sample .θÅ, σ2Å, λÅ/∼p.θ|σ2Å, λÅ/p.σ2Å|λÅ/q.λÅ|λ/:

(c) Let

α=min
{

1,
p.λÅ/q.λ|λÅ/

p.λ/q.λÅ|λ/

}
:

(d) Accept θÅ, σ2Å and λÅ with probability α.

Note that the acceptance ratio α does not depend on θÅ and σ2Å, so we can avoid the backward
sampling of θ if λÅ is not accepted. This method produces a substantial reduction in the
computational cost of the MCMC algorithm. Our implementation of the algorithm considers a
transition density q.λÅ|λ/ defined on the log.λ/ scale that follows a normal distribution centred
on the last sampled value.

5.2. Conditional for missing values
Since we are assuming that the error terms ε

y
t and εz

t are normally distributed, given all the model
parameters, the joint distributions of .Yo

t , Yu
t / and .Zo

t , Zu
t / are multivariate normal. Then, the

conditional distributions of Yu
t given Yo

t and Zu
t given Zo

t are also normal with moments of
well-known form.

5.3. Conditional for constant phase parameters
The constant phase parameter a only appears in the model equation for Yt . Given θy, σ2

y and
λy, it can be easily shown that the conditional likelihood for a is given by the regression model

Kt =a1 sin.πt=12/α1t +a2 sin.πt=6/α2t +ε
y
t

where

Kt =Yt −1nβ
y
t − cos.πt=12/α1t − cos.πt=6/α2t −Ztγt

is computed at the current value of θy. Then, the conditional likelihood function for a has a
bivariate normal kernel. Computations are then particularly easy if the prior is a conjugate
bivariate normal or a standard reference prior p.a/∝1.

5.4. Spatial interpolation
Let s denote an unobserved site; Y s

t and Zs
t are the unobserved square-root ozone concentration

and temperature at such a site at time t. Spatial interpolation consists of producing samples of
.Y s

t , Zs
t / from its posterior distribution. Obtaining such a sample is done by first sampling Zs

t

from

p.Zs
t |βz

t , ηt , δt , σ2
z , λz, Zt/,
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and then sampling the parameters .αs
1t , α

s
2t/ that define the seasonal term at site s from

p.αs
it|αs

it−1, αit , αit−1/, i=1, 2:

Finally, we sample Y s
t from

p.Y s
t |αs

1t , α
s
2t , Zs

t , β
y
t , α1t , α2t , γt , σ2

y , λy, Yt , Zt/:

Since the state vector θz is independent of location, the conditional distribution of Zs
t given

θz and Zt is derived from the observation equation for .Zs
t , Zt/ and follows a normal distri-

bution. To sample αs
it , i=1, 2, we consider the augmented state vectors αÅ

it = .αs
it , αit/, i=1, 2,

and derive its distribution from the corresponding evolution equation. Given a realization of
.αs

1t , α
s
2t/, the conditional for Y s

t is derived from the joint distribution of the pair .Y s
t , Yt/, as

obtained from the observation equation. Note that the simulation that is needed for the spatial
interpolation can be implemented after running the MCMC algorithm that uses only the data
that are observed at the monitoring stations.

6. Results

We fitted our space–time model to the data that appear in Fig. 2 with the purpose of obtaining
forecasts and kriged estimates of ozone concentrations. The hyperparameters of the prior distri-
butions were chosen according to the fact that the evolution range is higher than the observation
range. This is because harmonics are spatially more correlated than the errors in the observa-
tion equation, since the seasonality is quite similar across locations. Also, we assumed that
the prior for the observation variance is larger for temperature than for ozone concentration,
reflecting the fact that the temperature shows more variability than the square root of ozone
concentration.

The results below are based on the following prior specifications. For the observation vario-
gram parameters, we choose inverse gamma priors: λy ∼ IG.1, 5/ and σ2

y ∼ IG.2, 0:01/ for ozone
concentration, and λz ∼ IG.1, 0:5/ and σ2

z ∼ IG.1, 0:25/ for temperature. For the evolution equa-
tion, we fix the range and variance parameters at the following values: λ1 =25, λ2 =25, τ2

y =0:02,
τ2

1 =0:0002, τ2
2 =0:0004 and τ2

γ =0:0002 for ozone concentration, and τ2
η =18, τ2

z =0:004
and τ2

δ =0:04 for temperature. The prior hyperparameters were selected on the basis of vario-
gram fits to the univariate residuals. The evolution parameters were selected after an extensive
simulation study, where we required the simulated data to match closely the spatial and seasonal
patterns in the historical data.

We complete the specification with priors on the initial states. For ozone, we set θ
y
0 ∼

N.my
0, Cy

0/ with my
0 = .2:85, −0:751′

n, 0:081′
n, 0:01/′, and Cy

0 =block diag.1, 0:01I, 0:01I, 0:001/,
with the intercept centred on the mean square-root level, the harmonic parameters centred
at values that match the bimodal diurnal cycle and the temperature coefficient centred at a
slightly positive value. We choose a fairly large variance for all the components except for the
harmonics. Finally, for temperature, we set θz

0 ∼N.mz
0, Cz

0/, with mz
0 = .18:5, 0, −2:7, −5, 0, 0/′,

and Cz
0 =diag.10, 1, 10, 10, 10, 10/, with the intercept centred at the September average, and the

harmonics calibrated to capture the daily cycle.
Under these prior specifications, we ran the MCMC algorithm for 25000 iterations after a

burn-in period of 1000 iterations, and we collected all samples for posterior inference. Table 1
reports the posterior median as well as the extremes for a 95% posterior probability interval for
the parameters in the model which are not time varying.
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Table 1. Posterior summaries for σ2, λy , a1, a2, σ2
z and

λz

Quantile σ2
y λy a1 a2 σ2

z λz

2.5% 1.15 5.60 2.14 7.43 0.81 5.76
Median 1.27 6.63 2.47 9.83 0.89 6.99
97.5% 1.40 7.84 2.85 13.26 0.98 8.37

Fig. 4 shows retrospective medians and predictive values of ozone level for three monitor-
ing stations: Xalostoc, Benito Juárez and Pedregal. From September 8th until September 13th,
medians and 95% probability bands (full curves) are plotted with the hourly ozone observations
(dots). Also, we present the forecast median with the 95% predictive probability intervals (full
curves) and the actual observed values of ozone level (open circles) for the 12 h of September
14th. In the retrospective sense, the model represents the cyclical patterns and non-stationarities
of the data adequately. Also, the median and predictive intervals for September 14th look in
accordance with the actual data. Note that our results are reported on the original scale and
not in square-root units.

Maps of median ozone levels for September 8th, 1997, from 11 a.m. to 6 p.m. appear in Fig. 5.
The maps are based on a 15×15 interpolation grid over which we apply the spatial interpolation
algorithm that is presented in Section 6. The median was computed across MCMC samples.
The resulting map seems to be consistent with the cyclical behaviour of the data and theories
about the dispersion of ozone in Mexico City. The pollutant builds at around 12 p.m., and the
peak hours are between 2 and 4 p.m. The levels seem to dissipate by 6 p.m.

Fig. 6 shows the corresponding interquartile range maps for square-root ozone levels on Sep-
tember 8th. The maps illustrate three features of the model. First, the overall uncertainty level
changes drastically from hour to hour from the peak uncertainty at 3 p.m. when the ozone levels
are highest, to the lowest at 6 a.m. when the levels are lowest. Second, as expected, uncertainty
is lowest near the observed stations. Finally, we note that the standard deviation contours are
spherically shaped between stations, which is because of our assumption of isotropy for the
errors.

Fig. 7 shows hourly means and intervals for temperature (in degrees Celsius) at the three
stations over the 168-h period. For the first 144 h, we show the smoothed (retrospective) means
and corresponding 95% intervals, based on the data up to time 144. For the last 24 h, we plot
the predictive means and 95% intervals, again based on the first 144 h of data. The estimation
of the altitude coefficient in the model for temperature reveals that there is a significant effect of
such a variable, which is more pronounced during the night. From Fig. 7 and analogous plots
for the rest of the stations, we observe that the model slightly underpredicts the maximum tem-
perature of some stations, and overpredicts the minimum in others. We started our modelling
by considering that the temperature was constant over all stations for each time step and found
that the current model improves the fit of the ozone fields, which is our goal. We feel that further
elaboration on the model for temperature will not produce results that are substantially better
than those those which were obtained.

In Fig. 7(b), we show smoothed and predictive intervals at Benito Juárez, a station which does
not take temperature measurements. This plot highlights a key feature of our modelling frame-
work, namely that we can impute missing values and quantify uncertainty for either variable
(temperature or ozone) at any specified location in the modelling domain.
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Fig. 4. Ozone data, retrospective medians and predictive values with 95% probability bands for three
monitoring stations: (a) Xalostoc; (b) Benito Juárez; (c) Pedregal

6.1. Discussion
A difficult task for spatiotemporal models with a non-trivial number of sites and time steps is to
assess the validity of the model. We have not been able to find in the literature a comprehensive
and systematic approach for spatiotemporal model validation. This is probably because of the
difficulties in dealing with massive amounts of data and taking into account time and space. We
concentrate our analysis on the study of the predictive behaviour of the model for which, given
the Bayesian nature of our approach, we have a full probabilistic description.

To assess the spatial predictive capability of our model we took a ‘leave-one-out’ approach
with each of the 19 stations. As an example, Fig. 8 shows the posterior predictive densities at
2 p.m. for September 10th, 1997. The labels on the x-axis correspond to the actual observed
values, which were not used in the model fit. We observed that in most cases the actual observa-
tions fall in the central range of the corresponding predictive density, indicating compatibility
between the model predictions and the observations. Additionally, the posterior forecast densi-
ties corresponding to 2 p.m. on September 14th, 1997, are shown in Fig. 9. In this case, the data
from all the stations were used to compute the forecasts. Once again, the actual observed values
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Fig. 5. Retrospective median ozone maps for September 8th, 1997, based on 25000 MCMC samples, using
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Fig. 6. Retrospective interquartile range maps of the square-root ozone concentrations for September 8th,
1997: �, locations of the stations

fall within the range of the predictive densities, which confirms our comments in the previous
section with respect to the forecast intervals that are presented in Fig. 4.

Kim et al. (1998) proposed a method to assess the validity of a time series model by using
one-step-ahead predictions. We consider a modification of their method to the spatial case by
considering the prediction that is produced by the model for a station that has been left out of
the analysis. The idea is to compute the predictive probability that a ‘leave-one-out’ forecast is
below its corresponding observed value. In other words, for an omitted station i, we obtained
an estimate of uit =Pr.YÅ

it �Yit|Y−i/, where the prediction is denoted by an asterisk and Y−i cor-
responds to the data without station i, by averaging across MCMC iterations. It can be shown
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Fig. 7. Temperature data, retrospective means and predictive values with 95% probability bands for three
monitoring stations: (a) Xalostoc; (b) Benito Juárez; (c) Pedregal

that, if the model is correctly specified, the values in the sequence of uit are independent and
they are uniformly distributed on the interval .0, 1/. We explored the 19 possible sequences of
ut-values by using qq-plots and observed acceptable results in most cases. The worst behaviour
was observed for Merced, for which the distributional assumptions were completely unsatisfied.
A careful analysis of the data from this station reveals anomalously low values of ozone levels in
relation to the neighbouring stations. We hypothesized a calibration problem, but, since similar
discrepancies were not observed during the rest of the year, we suppose that there was either
a transient failure in the measurement process or a very localized effect that our model cannot
capture.

A by-product of the leave-one-out predictive analysis is the availability of draws from the
posterior distributions of the parameters given by the 19 different data sets. These allowed us to
perform a posterior robustness analysis with respect to the presence of each of the stations. The
marginal posterior distribution of most parameters was fairly insensitive to the removal of a
station. The exceptions were the range parameters λy and the phase parameter a1 for which box
plots are shown in Fig. 10. We observed that removing Merced (MER) produced an important
increase in λy. This is consistent with our previous comment regarding this station. In contrast,
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(the stations are identified with the first letter of their names; letters on the x-axis correspond to actual obser-
vations): (a) south-west region; (b) central region; (c) north-east region

removing Tlalpan (TPN) produced a significant decrease in a1, something that is probably due
to the downwind position of this station which sets it slightly out of phase with the others.

6.2. Measurement error
Given the anomalies that we observed in some stations, particularly Merced, we thought of
including a specific component in the model to explain measurement error. Ozone measure-
ment devices are usually calibrated to a precision of 3–5 ppb for, roughly, the whole measurable
range. Our model considers the data after a square-root transformation; we thus notice that a
first-order Taylor expansion yields

√
.µ+v/ ≈√

µ+ 1=.2
√

µ/v where µ is the mean level and
ν the measurement error. We assume that a measurement of 5 ppb corresponds to 1 standard
deviation of each of the minute-by-minute readings of the instrument. Since our observations
correspond to 1-h averages and the smallest reading amounts to 3 ppb, an upper bound of the
standard deviation of the error term in the previous equation is 5=2

√
.3×3600/=0:02406. So,

under the assumption that the measurement errors are uncorrelated and that there is no bias
due to miscalibration of the instruments, the measurement error is negligible.

A related issue is that of incorporating a ‘nugget’ effect in the model to capture small range
variabilities. This can be done by adding an extra random term or, equivalently, a third layer to
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Fig. 10. Box plots of samples from the marginal posterior distributions of (a) λy and (b) a1 obtained by
leaving one station out (indicated on the horizontal axis): the plot denoted ALL represents the posterior
sample when all stations are included

the current model. We feel that our model already incorporates random effects for location, tem-
perature and periodicity. A nugget effect will produce predictions that are less smooth, which is
probably realistic but at the cost of dealing with identifiability problems and adding parameters
to an already complex model. Cressie and Wikle (1998) advocated the use of a three-layer model
which focuses on a direct specification of the physical dynamics. This is our preferred path for
elaborations over the present approach.

7. Conclusions and extensions

In this paper, we introduced a new spatiotemporal model for hourly ozone levels in Mexico
City that allows for spatial interpolation and prediction. The model is formulated within the
state space framework and includes a set of time-varying Fourier coefficients to account for the
periodicity in the data. Also, the model considers uncertainty on any missing values of ozone
concentrations and the covariates which, in the present version, is only the temperature. We
produced posterior inference with an efficient block MCMC simulation algorithm that samples
the spatial covariance and error variance parameters unconditional on the state vectors. The
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results that were obtained with the model seem reasonable for short-term forecasting and spatial
interpolation, as can be assessed from the predictive analysis.

However, the actual model is only empirical and does not consider transport or chemical
reactions that are related to ozone. Currently, we are trying to obtain second-by-second data,
wind information and other covariables such as NOx or volatile organic compounds to incorpo-
rate in the model. We believe that this extra information combined with scientific priors based
on climatology or photochemistry can produce a space–time model that not only predicts and
interpolates adequately but also has some physical interpretation.
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Appendix A: Marginal likelihood for range and variance parameters

The models that are presented in this paper have the general DLM or state space form where

p.Yt |θt , σ2, λ/=N.Yt |F′
tθt , σ2Vλ/,

p.θt |θt−1/=N.θt |Gθt−1, σ2Wλ/,

with θt denoting the state vector and λ a non-negative parameter that defines the covariances Vλ and Wλ,
and σ2 a common scale factor, p.θ0|D0/ = N.θ0|m0, C0/. Denoting Dt the information that is available
until time t and assuming that

p.λ, σ2/=p.λ/p.σ2/

then the joint posterior distribution for the state vectors, the variance and the range parameter is

p.θ1, . . . , θT , σ2, λ|DT /=p.λ/p.σ2/p.θ0|D0/
T∏

t=1
p.Yt |θt , σ2, λ/p.θt |θt−1, σ2, λ/:

Using Bayes’s theorem and the Markovian structure of the model, the joint posterior can be written as

p.θ1, . . . , θT , σ2, λ|DT /=p.λ/p.σ2/
T∏

k=1
p.θT−k|θT−k+1, σ2, λ, DT /

T∏
t=1

p.Yt |σ2, λ, Dt−1/

=p.θ|σ2, λ, DT /p.σ2|λ, DT /p.λ|DT /

where θ= .θ1, . . . , θT /.
Given that p.Yt |σ2, λ, Dt−1/=N.ft , σ2Qt /, where ft and Qt are obtained with the forward filtering equa-

tions in West and Harrison (1997), chapter 16. Integrating out θ we obtain that the posterior of .λ, σ2/
can be expressed as

p.λ, σ2|DT /∝p.λ/p.σ2/
T∏

t=1
p.Yt |σ2, λ, Dt−1/

∝p.λ/p.σ2/
T∏

t=1
|Qt |−1=2

(
1
σ2

)T=2

exp
{

− 1
2σ2

T∑
t=1

.Yt − ft /
′Q−1

t .Yt − ft /

}
:
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Thus, if we adopt an inverse gamma prior with parameters aσ and bσ for σ2, we have that p.σ2|λ, DT / is
an inverse gamma distribution with shape parameter T=2+aσ and scale parameter ΣT

t=1.Yt − ft /
′Q−1

t .Yt −
ft /=2+bσ.

Additionally, if we integrate out σ2 with this prior, then

p.λ|DT /∝p.λ/
T∏

t=1
|Qt |−1=2

{
T∑

t=1
.Yt − ft /

′Q−1
t .Yt − ft /+bσ

}−T=2+aσ

:

Both Qt and ft depend on λ since the forward filtering equations involve Vλ and Wλ.
Finally, since

p.θ|σ2, λ, DT /=
T∏

k=1
p.θT−k|θT−k+1, σ2, λ/,

and each of the terms in the product is a normal distribution, a sample of θ can be obtained recursively
moving backwards from θT to θ1.
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